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ABSTRACT
�e current mechanisms for locating spectrum o�enders are time

consuming, human-intensive, and expensive. In this paper, we pro-

pose a novel approach to locate spectrum o�enders using crowd-

sourcing. In such a participatory sensing system, privacy and band-

width concerns preclude distributed mobile sensing devices from

reporting raw signal samples to a central agency; instead, devices

would be limited to measurements of received power. However,

this limit enables a smart a�acker to evade localization by simul-

taneously transmi�ing from multiple infected devices. Existing

localization methods are insu�cient or incapable of locating multi-

ple sources when the powers from each source cannot be separated

at the receivers. In this paper, we �rst propose a simple and ef-

�cient method that simultaneously locates multiple transmi�ers

using the received power measurements from mobile devices. Sec-

ond, we build sampling approaches to select mobile sensing devices

required for localization. Next, we enhance our sampling to also

take into account incentives for participation in crowdsourcing. We

experimentally evaluate our localization framework under a variety

of se�ings and �nd that we are able to localize multiple sources

transmi�ing simultaneously with reasonably high accuracy in a

timely manner.

1 INTRODUCTION
When so�ware de�ned radios (SDRs) become ubiquitous, i.e., in the

hands and pockets of average people, it will be easy for a sel�sh user

to alter his radio(s) to transmit and receive data on unauthorized

spectrum, for example, using an o�-limits band, or transmi�ing/re-

ceiving on a channel when another device has priority. In addition,

SDRs infected by a computer virus or malware could exhibit ille-

gal spectrum use without the user’s awareness. Cheap jamming
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devices are already being used for illegal activities and this trend is

likely to grow [3]. �e U.S. Federal Communications Commission

has an enforcement bureau which detects spectrum violations via

complaints and extensive manual investigation. �e mechanisms

used currently for locating spectrum o�enders are time consuming,

human-intensive, and expensive. A violator’s illegal spectrum use

can be too temporary and mobile to be detected and located using

existing processes. We envision a novel approach that crowdsources
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Figure 1: Enabling Distributed Set ofWireless Devices to De-
tect and Locate Spectrum O�enders.

the sensing and localization of spectrum o�enders. We assume a dis-

tributed set of wireless devices, e.g., smartphones, radio frequency

(RF) sensor nodes, laptops, access points and modems, etc., will

participate by sensing the use of di�erent bands of the spectrum

over time and space and share their measurements with a detection

and localization module on a (cloud) server, as shown in Figure 1.

Our crowdsourced approach is expected to monitor a wide range of

frequencies using a mix of SDR and non-SDR devices
1
. �e detec-

tion and localization module requests and collects spectrum usage

information from a variety of sensors. It compares the spectrum

usage with the allowed spectrum usage information (spectrum poli-

cies and regulations, frequency bands, locations, etc.) available

in a database to determine and locate spectrum o�enders. �is

1
By 2020, the number of SDR devices is likely to be almost twice the number in 2014 [4].



spectrum usage database is akin to the whitespace database (e.g.,

an FCC-approved database that contains information on available

whitespaces and their locations).

Towards the ful�llment of this vision, in this paper, we focus on

crowdsourced localization of spectrum o�enders. Due to privacy

concerns and bandwidth and energy constraints, it is undesirable

for mobile sensing devices to share raw signal samples with a cen-

tral server, and hence, in our work, devices collect only received

power measurements. Our mobile sensing devices do not decode

any signals. A key challenge in localizing spectrum o�enders is that

of simultaneous localization of multiple transmi�ers
2
. We develop

a simple, yet e�cient and accurate approach that simultaneously

localizes multiple transmi�ers using the power of the sum of all

signals received at the selected wireless devices. While localization

of a transmi�er based on power measurements taken by a network

of sensors has been widely studied (see [30] for a survey), we argue

that the existing work on WSNs cannot be simply adapted for local-

ization of multiple transmi�ers using crowdsourcing. If two devices

transmit at the same time, the received signal is a phasor sum of the

signals from both. Simultaneous transmission in the same channel

can be a consequence of an a�acker’s violation of spectrum access

rules or an intentional e�ort to jam. In either case, the signals may

be impossible to separate, particularly when receivers report only

power measurements to the server. Furthermore, it is important

for crowdsourcing-based localization to account for the mobility

and changing availability of user devices.

Many existing methods assume that if multiple transmi�ers are

to be located, their signals can be separated at the receivers [30].

Note that even if all receivers were sophisticated enough to per-

form this blind source separation, a smart adversary could simply

transmit signals that are not blind separable. When multiple signals

cannot be separated, the few published methods [23, 25, 26] that

are able to localize multiple transmi�ers from power measurements

have high time complexity and do not consider the mobility and

temporal availability of transmi�ers and receivers. For example,

�asi EM [26], a statistical approach to localize multiple transmit-

ters, assumes that the transmi�ers and receivers are static and that

the number of transmi�ers is known a priori. �ere is existing

work on locating multiple transmi�ers using mobile robots [22].

However, this work is not applicable in our se�ing where mobile

users move without network control. We need a localization al-

gorithm which minimizes time complexity without signi�cantly

compromising the localization accuracy in dynamic environments

in order to detect and locate unauthorized transmi�ers.

We present a method for simultaneous power-based localization

of transmi�ers (SPLOT) for crowdsourced spectrum monitoring.

We consider the temporal availability and mobility of both receivers

and transmi�ers and make no assumptions about the number of

transmi�ers. Our approach relies on the fact that, even when mul-

tiple transmissions overlap, typically the vast majority of power

received by a receiver is from the nearest transmi�er. �erefore,

by �nding local maxima in the spatially distributed received signal

strength (RSS) measurements, we can approximate the region of

presence of each transmi�er. We can then convert the problem

2
For instance, a malware-based a�ack could simultaneously cause many devices to

violate rules or jam the spectrum.

of simultaneous multiple transmi�er localization to a set of single

transmi�er localization problems and use a matrix inversion ap-

proach to �nd the location of each transmi�er. Notably, we only

consider an approximate region of each transmi�er that is con-

�ned to the area around each local maximum and thus, achieve fast,

accurate, and scalable localization.

Next, we build sampling approaches to select mobile sensing

devices required for RSS measurements. Our goal is to select a set of

wireless devices that provides maximum coverage for the monitored

area considering mobility of both the sensing and the o�ending de-

vices as well as possible erroneous or missed measurements. In this

paper, we de�ne and use a new metric called degree expansion, that

represents the amount of overlap in the sensing ranges of mobile

sensing devices. Using this metric, we propose two sampling ap-

proaches: 1) Greedy sampling, and 2) Metropolis sampling. While

good Samaritans can be recruited for monitoring spectrum, mobile

users need not participate in crowdsourcing for sel�sh reasons (in-

cluding depletion of ba�eries and use of their processing resources)

unless they receive some payo� as a compensation. We enhance

our sampling approach to incentivize mobile users such that we

select nodes that maximize coverage but minimize the total payo�.

Furthermore, our incentive mechanisms motivate mobile sensing

devices to act truthfully. Our truthful sampling considers both the

budget limit and mobility of mobile sensing devices.

We experimentally evaluate our approach in two di�erent set-

tings: 1) an open environment with non-uniformly distributed re-

ceivers in the Orbit testbed [34] using USRP2 nodes for transmi�ing

and receiving signals, and 2) a clu�ered o�ce with 44 uniformly

distributed sensors [31]. Our experimental results show that using

SPLOT we are able to localize multiple transmi�ers with high accu-

racy and in a timely manner. �e highest average localization error

using SPLOT measured in the open environment is 1.16 meters

for up to 4 simultaneously transmi�ing transmi�ers, and the high-

est average localization error in the clu�ered o�ce with mobile

transceivers is 2.14 meters. In comparison, the highest average lo-

calization error in �asi EM measured in the open environment is

above 6 meters. Our results also show that SPLOT is tens of minutes

faster than �asi EM. We also implement SPLOT on commodity

devices and perform multi-transmi�er localization in a variety of

indoor and outdoor experiments. We �nd SPLOT to signi�cantly

outperform �asi EM in these se�ings as well.

2 LOCALIZATION
In this section, we describe our approach to simultaneously locating

multiple transmi�ers in the areas near the mobile sensing devices

(also referred to here as receivers). �e localization problem con-

sidered here is challenging for several reasons. First, there may be

multiple transmi�ers, and the number of transmi�ers is unknown.

Second, each measurement of received power is an unknown com-

bination of the received powers from each transmi�er. �ird, the

number and the locations of both transmi�ers and receivers might

change from one sample to the next. Fourth, each link from trans-

mi�er to receiver experiences multipath fading, which is known to

complicate RSS-based localization. We do not use time-of-arrival

(TOA) methods because they require recording and sharing users’

sampled signals, which violates our privacy model. We do not use



angle-of-arrival (AOA) methods because they require additional

RF hardware. We require an e�cient and accurate localization

approach that can locate all available transmi�ers in a dynamic

environment using only power measurements.

2.1 Methodology
Our localization methodology assumes that receivers (mobile sens-

ing devices) have been selected using our sampling approaches

and that these receivers are spread geographically across the moni-

tored area. Let K denote the unknown number of transmi�ers and

θ = {θ1,θ2, . . . ,θK } represent their unknown two-dimensional

locations. Our problem is to determine K and θ based on observed

received powers reported by L receivers, y = {y1,y2, . . . ,yL}.
Our localization approach relies on two observations. First, re-

ceivers that are located near the transmi�er observe generally

higher power than the receivers that are distant from the transmit-

ter. �e second observation is that the observed RSS at each receiver

is primarily a�ected by the nearest transmi�er. To validate this

observation, we compare the RSSs observed in selected receivers

when there is no transmi�er, when there is only one transmi�er,

and when we add multiple transmi�ers in di�erent locations. Our

results show that when there is a transmi�er near a receiver, the

RSS observed by this receiver increases substantially. However,

there is a small growth on the observed RSS by the receiver when

adding more transmi�ers at more distant locations.

�ese two observations allow us to reduce the problem of locat-

ing multiple, unknown number of transmi�ers to that of localizing

a set of single transmi�ers as follows. First, we �nd the local max-

ima of RSSs observed by receivers that are greater than a prede�ned

threshold. �e prede�ned threshold is set to the minimum RSS that

a receiver observes when there is a transmi�er near it. By de�ning

this threshold, we are able to separate the local maxima due to the

presence of a transmi�er from the local maxima due to the di�erent

fade levels at nearby receivers.

With the knowledge of the local maxima, our localization prob-

lem can be reduced to �nding K transmi�ers, where K is equal to

the number of local maxima. Instead of locating K transmi�ers

in the entire monitored area, we divide the problem into K single

transmi�er localizations. For each local maximum, we locate a

single transmi�er. However, we con�ne the area to the small area

around the local maximum and only use the RSSs that are observed

by the receivers in this area for localization. Restricting the area

to the small area around the local maximum reduces the time com-

plexity of localization approach, and more importantly, con�nes

the localization area and thus increases the accuracy of localization.

�is is because the noise in the measurements at receivers in other

areas has li�le impact.

A�er reducing the multiple transmi�er localization problem

to a set of single transmi�er localization, we locate each single

transmi�er in a small area around the local maximum using a

single transmi�er localization method. Speci�cally, we use a matrix

inversion approach for single transmi�er localization designed for

higher e�ciency and localization accuracy (see Section 5.3).

2.1.1 Single transmi�er localization. In this section, we apply

a linear model and perform inversion to localize the transmi�ed

power. Our approach is designed to accurately locate a source with

unknown transmit power. In this linear model, we estimate the

power �eld, i.e., the power transmi�ed vs. position. �is power

�eld is then used to �nd the location of an unknown transmi�er.

Given a local maximum of RSSs observed by receivers, we �nd a

transmi�er located in a con�ned area around the local maximum.

�e con�ned area is a circle of radiusR from the local maximum. Let

vector y = [y1,y2, . . . ,yL] be the received powers (in linear units

of Wa�s) observed by L receivers located in the con�ned area. Also,

let x = [x1,x2, . . . ,xQ ] be the power �eld, where xi represents the

transmit power sent by a transmi�er in voxel i . We select a grid of

Q voxels that �ll the con�ned area. We have a forward model for y,

y =Wx + n, (1)

where n is an L × 1 vector that represents the noise and fading

contributing to the L RSS measurements, andW is an L ×Q matrix

where Wi j indicates the gain that would be experienced on the

channel between a transmi�er at voxel j and receiver i , if there is a

transmi�er in voxel j. �e weight valueWi j is inversely related to

the distance of the voxel and the receiver. We model the weight as,

Wi j =

{
d
−np
i j , d > minPL

minPL−np , otherwise

(2)

Here, di j is the Euclidean distance from the center of voxel j to the

receiver i . np is the path loss exponent and minPL is a minimum

path length.

A power �eld estimate x̂ is estimated from y. However, �nding

x̂ is, in general, an ill-posed inverse problem. We use a regularized

least squares approach to compute an estimate,

x̂ = Πy (3)

Π =
(
WTW + σ 2

NC
−1

x

)−1

WT , (4)

where σ 2

N is the noise variance, WT
is the transpose of matrix

W , and the prior covariance matrix Cx is obtained by using an

exponential spatial decay function,

[Cx ]jl = σ 2

xe
−fjl /δc . (5)

Correlation distance constant δc describes the distance at which

two voxels have correlation coe�cient 1/e , σ 2

x is the variance of

the transmit power �eld, and fjl is the length of the line between

the centers of voxels j and l .
Finally, the transmi�er location is estimated to be the center of

voxel with maximum value of x̂ .

2.1.2 Dynamic Localization. We also address the problem of

locating mobile transmi�ers. We consider two dynamic cases: 1)

the number and locations of transmi�ers are changing; and 2)

the number and location of both transmi�ers and receivers are

changing.

One approach to locate these dynamic cases is to repeat the

multiple transmi�er localization procedure every time new received

power measurements are made. �is approach is not e�cient since

changes are likely to be small from one time interval to the next.

�us, in this section, we present methods to use the coordinates

from the previous estimate in the current localization problem.

Dynamic transmi�ers: When changes happen only in the number

and location of transmi�ers, our dynamic localization works as

follows.



�e localization module uses three data sources at time t : 1) the

RSS measurements of the selected receivers in time t − 1, which we

denote yt−1
; 2) the RSS measurements of the receivers in time t , yt ;

and 3) the locations of detected transmi�ers in time t − 1, which we

denote θ t−1
. �e �rst step is to estimate the number of transmi�ers,

which we accomplish by comparing yt−1
with yt . If there is no

signi�cant change, the localization module sets θ t = θ t−1
. If the

RSS increases signi�cantly for some of the receivers, the localization

module performs multiple transmi�er localization for the area that

is covered by these receivers to �nd new transmi�ers. If the RSS

decreases signi�cantly for some receivers, the localization module

removes previous transmi�ers if there are receivers with signi�cant

decrease in the RSS within the con�ned area (circle of radius r )

around the previous transmi�ers. �e set of transmi�ers at time

t , θ t is the union of the remaining transmi�ers from the previous

time and the newly added transmi�ers.

Note that by signi�cant change, increase or decrease, in RSS,

we mean any changes in the RSS that is greater than a prede�ned

threshold. �e prede�ned threshold is determined by the local-

ization module depending on the environment. �is prede�ned

threshold is equal to the minimum change in the RSS measurements

of receivers when at least one transmi�er is added to or removed

from the environment.

One drawback of the above approach is the propagation of error.

Since the localization module estimates current transmi�er loca-

tions using the previous results, the error can be carried forward

from one time interval to the next, and a�er some time, the de-

tected transmi�ers may be far from the actual transmi�ers. To deal

with this problem, we periodically reinitialize by performing the

multiple transmi�er localization algorithm without any previous

time estimates.

Dynamic transmi�ers and receivers: When the number and the

location of receivers also change over time, we cannot compare

two consecutive RSS measurements on the same link, as the change

in receiver position will cause signi�cant RSS changes. Even by

mapping the receivers in the previous time, t − 1, to the nearest

receiver available in time t and inversely relating the RSS to the

distance between mapped receivers, we are not able to compare

the RSSs in two consecutive time slots. �is is due to the fact

that RSS may be di�erent for receivers with the same distance

from the transmi�er due to both shadowing and small-scale fading.

�erefore, while the number or locations of receivers are changing,

we perform multiple transmi�er localization without using the

previous time information. However, we limit the recalculation to

at most every T seconds.

3 SAMPLING
An important aspect of o�ender localization is the task of selecting

a set of mobile sensing devices for RSS measurements. �e selec-

tion approach must consider the following: (i) maximum spatial

coverage of the monitored area, and (ii) computational e�ciency,

i.e., select the nodes in a timely manner.

To select mobile sensing devices to maximize coverage, we de�ne

a new metric called degree expansion. A high degree expansion

amounts to selecting receivers from new uncovered geographic

areas and thus maximizing coverage.

Algorithm 1: Greedy Algorithm

input :G = (V , E,W )
S // cardinality constraint

output :A // selected mobile sensing devices

1 A = ∅;
2 v = arдmaxv∈GdG (v);// the mobile sensing device with

maximum degree is selected first

3 A = A ∪ v ;

4 while |A | < S do
5 Select new node v ∈ V − A where

6 v ∈ arдmaxi∈V−Aj−1
mi |Aj−1

7 A = A ∪ v ;

8 end

We develop two selection algorithms namely Greedy and Metrop-
olis, to select a set of mobile sensing devices with high degree of

expansion in a timely manner.

3.1 Preliminaries
We assume that the mobile sensing devices know their locations. Let

T be the time interval (same as in Section 2) a�er which the sampling

is repeated. At the beginning of each time interval T , the central

controller sends the sensing request for that time interval to the

mobile sensing devices. �en, mobile sensing devices voluntarily

inform the central controller about their current locations and their

sensing ranges. �e sensing range of a mobile sensing device is the

maximum radius around their current location for a given transmit

power that they are able to measure. Given the current locations of

mobile sensing devices, the central controller constructs a weighted

graph G = (V ,E,W ) where v ∈ V represents a mobile sensing

device (node), ei, j ∈ E denotes a link between node i and node j,
and wi, j ∈ W represents the weight of link ei, j . �ere is a link

between node i and node j , ei, j ∈ E, if their sensing ranges overlap.

wi, j ∈ [0, 1] shows the amount of overlap between the sensing

range of node i and node j and is obtained from the following

formula:

wi, j =

{ (ri+r j−di, j )
(ri+r j ) di, j ≤ ri + r j

0 otherwise
(6)

Here, ri and r j are parameters related to the sensing ranges of

node i and node j respectively. di, j denotes the Euclidean distance

between two nodes. We de�ne the following:

• S is a set of nodes where S ⊂ V .

• N (S) is the neighborhood of S that includes all nodes in V − S
that have a link to S .

• dG (v) is degree of node v in graph G. dG (v) is equal to sum of

the weights of links that connect to v .

• �e degree expansion, DX (S), of a set S is DX (S) =∑
i ∈N (S )minj ∈S wi, j .

To select mobile sensing devices that maximize the coverage, we

develop algorithms for solving the optimization problem below:

arg max

S ⊂V
DX (S) (7)



Algorithm 2: Metropolis Algorithm

input :G = (V , E,W )
S, M // cardinality constraint and number of

iterations

output :Aopt // selected mobile sensing devices

// Initial sample, S nodes selected randomly.

1 Acurrent = random(V , S );
2 Aopt = Acurrent ;

3 for i = 1 to M do
4 v = rand (Acurrent , 1);
5 w = rand (V − Acurrent , 1);
6 Anew = {Acurrent − v } ∪ {w };
7 α ∈ rand [0, 1];
8 if α <

q(Anew )
q(Acurrent ) then

9 Acurrent = Anew ;

10 if q(Acurrent ) > q(Aopt ) then
11 Aopt = Acurrent ;

12 end
13 end
14 end

where, S is the cardinality constraint. �is optimization problem is

NP-hard. It can be reduced to the set cover problem [14]. In the fol-

lowing sections, we propose two algorithms to obtain approximate

solutions.

3.2 Greedy Algorithm
�e greedy approach is shown in Algorithm 1. In the greedy al-

gorithm, the selection is based on a greedy heuristic that selects

the mobile sensing devices based on their marginal contributions

to the degree expansion. �e mobile sensing device with maxi-

mum degree expansion is selected �rst. �en, the mobile sensing

devices are selected one by one iteratively based on their mar-

ginal contributions on degree expansion until S mobile sensing

devices are selected. By iteration j, j − 1 mobile sensing devices

are selected (denoted by Aj−1), and the marginal contribution of

mobile sensing device i ∈ V −Aj−1, if represented by mi |Aj−1
is

equal to dG (i) −
∑
j ∈N (Aj−1)∪Aj−1

wi, j −
∑
j ∈Aj−1wi, j . �e mobile

sensing device with maximum marginal contribution to the de-

gree expansion is selected as the winner of the j iteration. I.e.,

v ∈ arдmaxi ∈V−Aj−1
mi |Aj−1

. To simplify the notation, we replace

mi |Aj−1
bymi in the rest of this paper.

3.3 Metropolis Algorithm
Metropolis is a Markov Chain Monte Carlo (MCMC) method to

sample and evaluate probability distributions [24]. Recently, Me-

tropolis sampling has been applied to subgraph sampling [18]. In

this section, we use the idea of subgraph sampling to approximate

the optimization problem of Equation 7.

Overview: Given a graph G = (V ,E,W ), the idea of Metropolis

algorithm is to create a subgraph of size S < |V | in each iteration.

�e �rst set of mobile sensing devices is selected randomly and

the subsequent sets of mobile sensing devices are constructed by

removing a node from and adding a new node to the subgraph. We

choose a quality measure, described below, to quantify the degree

expansion of samples. �e acceptance or rejection of new mobile

sensing devices is based on this quality measure. By selecting mo-

bile sensing devices until convergence is achieved while keeping

the selected mobile sensing devices with the maximum quality mea-

sure, we obtain a subgraph (selection of S mobile sensing devices

out of N users) that approximately optimizes the degree expansion.

We describe the pseudo-code of Metropolis in Algorithm 2.

�ality metric: Given a selected mobile sensing device A, the

maximum possible degree expansion of graph G = (V ,E,W ) is∑
v ∈V−A dG (v). �is implies that the selected nodes, A, have links

to all the other nodes, V − A (i.e., N (A) = V − A). As a result, a

normalized quality measure is equal to: q(A) = DX (A)∑
v∈V−A dG (v) . �e

quality measure determines the degree expansion. A higher quality

measure corresponds to a higher degree expansion.

4 TRUTHFUL SAMPLING
A naive way to provide incentives for the mobile sensing devices is

to reward them such that the reward amount is greater than their

declared cost of participation. �e problem with this approach is

that mobile sensing devices can over-report their costs and receive

higher rewards. �erefore, the algorithm for selecting mobile sens-

ing devices should also motivate them to truthfully report their

costs. In this section, we enhance the greedy algorithm to consider

both cost and degree expansion in selecting mobile sensing devices

and add truthfulness. We design a time e�cient payment mech-

anism for the case where the sampling is not optimal. �en, we

propose the budget feasible version of the greedy algorithm. Fi-

nally, we propose a truthful mobility aware sampling approach that

prevents sel�sh mobile sensing devices from cheating with regards

to their availability for the sampling task. In truthful sampling, in

addition to location and the measuring range, the mobile sensing

devices also inform the central controller about their bids that can

be equal or greater than their actual costs of collecting data, ci .
Given graph G = (V ,E,W ), and a cardinality or a budget con-

straint, the central controller selects winners and determines the

payment, pi , for each winner. We assume that all mobile sensing

devices act rationally and sel�shly, and their main goal is to maxi-

mize their own pro�ts, not to harm others. Also, each user has a

utility of pi − ci > 0 if selected and 0 otherwise.

4.1 Truthful Greedy Algorithm
Given the cardinality constraint S , the central controller wants to

select S mobile sensing devices that maximize the degree expansion

and minimize cost while considering individual rationality (pro-

vides the required incentives for sel�sh players to participate in the

game) and incentive compatibility (truthfulness). �is amounts to

solving the following optimization problem.

max

S ∈V

∑
i ∈S

mi
ci

s .t .

∀i, c ′i ,pi (ci ) − ci ≥ pi (c ′i ) − ci (8)

∀i,pi (ci ) − ci ≥ 0 (9)

Here, Constraints 8 and 9 provide incentive compatibility and indi-

vidual rationality.



Our allocation mechanism must consider both cost and the de-

gree expansion. Our payment mechanism must ensure both in-

centive compatibility (IC) and individual rationality (IR). �e best

known payment mechanism for providing IC and IR is the well-

known Vickrey-Clarke-Groves (VCG) mechanism [5]. Unfortu-

nately, VCG fails to provide IC and IR when the allocation mech-

anism is not optimal. �e problem of selecting a set of mobile

sensing devices that maximize the total weight is equivalent to

set-cover problem which is NP-hard. We use a Greedy algorithm to

approximate the optimal solution. However, we still need a truthful

payment mechanism that employs an approximated greedy algo-

rithm to select mobile sensing devices. Towards this goal, we rely

on Myerson’s characterization of truthful mechanisms [21].

Theorem 4.1. (Myerson 1981). A mechanism with allocation
mechanism A and payment mechanism P is truthful if and only if
the following holds:
• A is monotone: �e allocation mechanism keeps selecting the

mobile sensing device i as a winner if it independently decreases
its declared cost, ci .

• P pays winners the threshold amounts: Paying each winner
the maximum declared cost.

First, we need to show the sub-modularity for
mi
ci which implies

that:

m1

c1

≥ m2

c2

≥ . . . ≥ mS
cS

(10)

We show the sub-modularity by contradiction. Suppose mobile sens-

ing device i and mobile sensing device l are selected by the central

controller where i < l , i.e., the mobile sensing device i is selected

before the mobile sensing device l . Let us assume that
mi
ci <

ml
cl

.

According to the sampling mechanism, [i] = arдmax j ∈V−Ai−1

mj
c j .

�at means

mi |Ai−1

ci ≥ ml |Ai−1

cl
. Given that Ai−1 ⊂ Al−1

,ml |Ai−1
≥

ml |Al−1

. �erefore, we have

mi |Ai−1

ci ≥ ml |Ai−1

cl
≥

ml |Al−1

cl
, which is

a contradiction with our assumption. As a result, Equation 10 is

true. Next, we determine the payment using the Myerson’s condi-

tions. �e key point is that we have to �nd the maximum value for

the cost that a mobile node can declare and still win. We can �nd

this threshold amount for each winner i by se�ingV ′ = V −{i} and

run the greedy algorithm until i is no longer selected. Let k be the

index of the last mobile sensing device where
mk
ck
< mi

ci . �en, we

obtain the payment to mobile sensing device i from the following

formula:

pi (ci ) =max
1≤j≤k

c jm
j
i

mj
(11)

wherem
j
i is the marginal contribution of mobile sensing device i

on the degree expansion in iteration j.

Lemma 4.2. �e payment mechanism provides individual ratio-
nality.

Proof. If a mobile sensing device is selected by the sampling

mechanism, then the utility is equal to

c jm
j
i

mj
− ci . Given that

m j
i

ci ≥
mj
c j , the utility of the winner is always positive. Also, if the mobile

sensing device is not selected by the sampling mechanism, the

utility of the device is zero. �

Lemma 4.3. �e payment mechanism provides incentive compati-
bility for the declared cost.

Proof. Let ci , c
′
i be the declared cost of mobile sensing device i

when it is being truthful and not truthful, respectively. We must

consider four cases here. First, if mobile sensing device i is the

winner, it is still selected even by over-reporting, c ′i > ci , or under-

reporting, c ′i < ci , its cost. In this case, the utility of the mobile

sensing device decreases. �us, the mobile sensing device has no

incentive to lie. Second, if the mobile sensing device i is a loser it

is still not selected even if it over-reports or under-reports its cost.

�en, the utility is still zero and once again there is no incentive

to lie. �ird, if mobile sensing device i is a winner, is not selected

by over-reporting its cost. �en, the utility will be zero. �us, the

mobile sensing device has no incentive to lie. Fourth, if the mobile

sensing device i is a loser and it is not selected by over-reporting

its cost. Otherwise, it contradicts the sub-modularity. However,

the mobile sensing device can be selected by under-reporting its

cost. Let assume that the mobile sensing device l is selected by the

greedy algorithm when the mobile sensing device i acts truthfully.

�is means
ml
cl
≥ mi

ci . Since the maximum threshold for the mobile

sensing device i is at least
ml
cl

, the payment to player i is at least

ml
i cl
ml

meaning that the utility is at most zero. �

4.2 Budget-feasible Truthful Greedy Algorithm
We now consider a limit, B, on the total budget available to the

controller. Given this limit, we must select a set of mobile sensing

devices that maximize the marginal contribution on degree expan-

sion. To select the mobile sensing devices with the budget limit

constraint, similar to [38], we check the following condition at each

iteration of the greedy algorithm, and stop the algorithm whenever

the following condition no longer holds.

ci ≤ B
m
j
i∑

j ∈Aj mj
(12)

Let {1, . . . ,k} be the largest subset that respects condition 12. To

�nd the amount of payment for mobile sensing device i ≤ k , we

remove this player from the set of mobile sensing devices, V ′ =
V − {i}, and then run the greedy algorithm. In each iteration of

greedy algorithm, we check the budget limit constraint, Equation 12.

Let k ′ be the last iteration of the greedy algorithm forV ′ = V − {i}
that Equation 12 holds and mobile sensing device i is still a winner,

mk′
ck′
≤ mk′

i
ci . To simplify the notation, we write the proportional

share of mobile sensing device i in iteration j, ρi (j) = B
m j
i∑

j∈Aj mj

and ci (j) =
c jm

j
i

mj
. �e payment for user i in the budget feasible

mechanism is:

pi =max j≤k ′(min(ρi (j), ci (j))) (13)

Lemma 4.4. �e Budget feasible mechanism provides individual
rationality.

Proof. Since the payment has the maximum value, we need to

show the following for a j ≤ k ′.

(1) ci ≤ ρi (j)



(2) ci ≤ ci (j)
�e �rst condition is the budget limit constraint, Equation 12, that

holds. �e second condition is related to the threshold payment and

shows that the mobile sensing device i is still winner. Otherwise,

the mobile sensing device i is not selected �

Lemma 4.5. �e budget feasible mechanism provides incentive
compatibility for the declared cost.

Proof. To prove incentive compatibility, we need to show that

pi is the maximum cost that mobile sensing device i can declare and

still be selected by the allocation mechanism. Let r be the index in

j ≤ k ′ such thatmin(ρi (j), ci (j)) is maximized. For the case where

ρi (r ) < ci (r ), declaring higher cost puts the mobile sensing device

i a�er �rst k ′ users, therefore, the mobile sensing device i will not

be selected by the sampling mechanism. Otherwise, if there is a j
where j ≤ k ′ such that ρi (j) > ρi (r ), considering the maximality

of r , ci (j) < ρi (r ) < ρi (j). �is implies that mobile sensing device i
by increasing its cost gets placed a�er mobile sensing device j and

thus, will not be selected. If ρi (r ) ≥ ci (r ), a higher cost places the

mobile sensing device i a�er r and since r is the maximum index

in k ′, mobile sensing device i will not be selected. Otherwise, if

there is a j, j < k ′ where ci (j) > ci (r ), by maximality we have

ci (j) > ρi (j). i will not be selected because of the budget limit

constraint, Equation 12. �

4.3 Mobility Aware Budget-feasible Truthful
Greedy Algorithm

In this section, we consider mobile sensing devices that can fre-

quently change their locations. We propose a truthful mobility

aware sampling that prevents the sel�sh mobile sensing devices

from lying about their availability for the sensing task. In this set-

ting, when the central controller probes the nearby mobile sensing

devices for sampling over the time interval T , the mobile sensing

devices reply by declaring their locations, costs, and their avail-

ability. Based on this information, the central controller selects a

set of mobile sensing devices that maximize the marginal degree

contribution under the budget limit and also are available during

the time interval T . By providing incentives for the mobile sensing

devices to declare the availability truthfully, the controller only se-

lects among those devices that are available over the time interval

T .

�e sampling approach in the mobility-aware truthful mecha-

nism is the same as one in the previous subsection. However, in the

mobility aware approach, the central controller �rst selects the mo-

bile sensing devices that are available during the time intervalT and

then applies the greedy budget limit on the available mobile sensing

devices. �e payment mechanism in this case should provide incen-

tive for mobile sensing devices to declare their availability times

truthfully. �erefore, in the mobility aware truthful mechanism,

the threshold payment depends on cost and the availability time of

mobile sensing devices. Let t be index of a time interval that mobile

sensing device i participates in the sampling, then the payment to

mobile sensing device i is the maximum of threshold payments for

each time slot T . Formally,

pi =maxt (pi (t)) (14)

�e above payment ensures the truthfulness of mobile arrival and

departure times by removing the time dependency. Let ai ,di denote

the arrival and departure times of device i , respectively. Let a′i ,d
′
i

be the declared arrival and departure time for the mobile sensing

device i . Considering the fact that the mobile sensing device cannot

declare early arrival and late departure, [a′i ,d
′
i ] ∈ [ai ,di ]. �us, the

mobile sensing device i can only decrease the value of t . Since we

take the maximum among all threshold payments, the payment to

mobile sensing device i when it lies about the availability time is

no greater than that when it reports truthfully.

4.4 Time complexity
Now, we show that truthful sampling can be done in polynomial

time. For the Greedy algorithm, the time complexity is O(S logN ).
Recall that, S , N denote the cardinality constraints and the number

of available mobile sensing devices, respectively. For the greedy

truthful algorithm, the sampling time complexity is O(S logN ). We

also need to run the sampling mechanism S more times for payment

determination. �us, the time complexity is O(S2
logN ). �is time

complexity is the same for the budget-feasible algorithm. Finally,

for the mobility-aware algorithm, the payment is the maximum

threshold payment for each time slot. �erefore, the overall time

complexity is O(tS2
logN ) where t is number of time intervals T

that mobile sensing devices are available.

5 EXPERIMENTAL SETUP
To evaluate our sampling and localization approaches, we conduct

experiments in two di�erent areas: an open environment, and a

clu�ered o�ce area. In this section, we describe these two areas

and the mobility se�ings for transmi�ers and receivers. We also

explain the evaluation metrics. �e values of parameters used in

our localization and sampling are listed in Table 1.

5.1 Test Environment
Open environment: In the open environment, there are no objects

or obstructions in the area. �is experiment is performed on the

Orbit testbed [34], using the USRP2 nodes to transmit and receive

signals. In this experiment, 14 receivers and 4 transmi�ers are

placed non-uniformly inside of a 20 by 20 m area. �e transmi�ers

send a sinusoidal continuous wave (CW) signal, and the receivers

measure received signal strength (RSS) at the same frequency.

Clu�ered o�ce: �e o�ce area is clu�ered with desks, book-

cases, �ling cabinets, computers, and equipment. �e collected

data is a public data set [31]. In this experiment, 44 sensors are

placed randomly in a 14 by 13 (m) area. Here, the transmi�ers

are transmi�ing sequentially; and as this is a previously collected

public experimental data set, we cannot change it to have multiple

transmi�ers transmi�ing simultaneously. To approximate what

the RSS would have been if multiple transmi�ers had transmi�ed

simultaneously, we use the sum of linear received powers measured

from each transmi�er when transmi�ing sequentially. We justify

this approximation as follows. First, we note that the expected

value of the power of the sum of multiple signals is the sum of

the powers of those individual signals [33]. Second, we perform a

validation experiment in the Orbit testbed. For this validation, we

randomly select two USRP2s and set them to transmit. We denote



Table 1: Evaluation parameters.

Parameters Values Descriptions

δp 1.5 Pixel width(m)

σ 2

x 0.5 Voxels variance(dB)

δc 1 Correlation coe�cient

minPL 1.5 Minimum path length(m)

np 2 Path loss exponent

R 4 Con�ned area radius(m)

k 20 Number of iterations in Metropolis

the receiver linear power measurements as RSS(TX1) and RSS(TX2)

when the transmi�ers transmit sequentially, and RSS(TX1,TX2)

when they transmit simultaneously. Figure 2 shows the compari-

son of RSS(TX1)+RSS(TX2) vs. RSS(TX1,TX2). �e data shows, in

fact, that the linear approximation is very accurate, almost always

within 0.5 dB.
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Figure 2: Correlation between the RSS received by receivers
when transmitting simultaneously and when transmitting
sequentially in the Orbit testbed.

Changes in Number and Locations of Transmi�ers and Receivers:
To approximate mobility despite the �xed locations of mobile sens-

ing devices in the two testbeds, we turn on and o� the mobile

sensing devices in the open environment and the clu�ered o�ce.

To model the on and o� states of each transmi�er, we use a two

state continuous time Markov chain that is able to model the bursts

of device availability (on state) [29], with state 0 indicating o� (or

not transmi�ing) and state 1 indicating on (transmi�ing).

5.2 Evaluation Metrics
(1) Localization error: �e localization error, ϵl , is equal to the root

mean squared error of the best assignment between estimated

and actual transmi�er locations [17].

ϵl (θ , ˆθ ) = 1

| ˆθ |
min

a∈A
©«
|θ |∑
i=1

| ˆθ |∑
j=1

ai, jd(θi , ˆθ j )2
ª®¬

1

2

(15)

where A is the set of all permutations between the set of actual

transmi�er locations θ and the set of estimated transmi�er

locations
ˆθ , and d(θi , ˆθ j ) is Euclidean distance between the ith

actual and jth estimated transmi�er locations.

(2) Cardinality error: �e cardinality error, ϵc , is the fraction of

time during which the number of estimated transmi�ers di�ers

from the actual number of transmi�ers [7].

(3) OSPA metric: �e optimal sub-pa�ern assignment (OSPA) met-

ric, ϵp , penalizes the error in the number of estimated transmit-

ters with a constantд that is measured in meters [36]. �e OSPA

metric is obtained by the following formula when |θ | ≤ | ˆθ |,

ϵp (θ , ˆθ ) =

©« 1

| ˆθ |
min

a∈A

|θ |∑
i=1

dд(θi , ˆθai )2 + д2

(
| ˆθ | − |θ |

)ª®¬
1

2

, (16)

where dд(θ , ˆθ ) = min(д,d(θ , ˆθ )). When |θ | > | ˆθ |, the OSPA

metric is obtained by inverting θ and
ˆθ in (16).

5.3 Results
As mentioned in Section 2, a�er �nding the local maxima, we

perform localization in each sub area using the matrix inversion.

�is approach is simple and e�cient in terms of time complexity.

Based on our evaluation, the running time of the matrix inversion

approach for a single transmi�er in the open environment is 0.1

second, however, the running time of the well-known maximum

likelihood estimator (MLE) [30] is around 1 second. In this sec-

tion, we evaluate the matrix inversion approach in terms of the

localization error. We compare the localization error of the matrix

inversion approach with that obtained from the MLE. Table 2 shows

the localization error in the open environment for each transmi�er.

As shown in this table, the matrix inversion approach preforms

be�er in terms of the localization error. �e average localization

error of matrix inversion is 1.11 meters. In comparison, the average

error of the MLE approach is 2.02 meters. Also, the variance of the

localization error of the MLE approach is 4.1 square meters which

is much higher than 0.18 square meters, the variance of the local-

ization error of the matrix inversion approach. We also evaluate

the localization error of one transmi�er in the clu�ered o�ce. We

�nd that the average and variance of localization error among all

possible single transmi�ers are 1.6 meters and 0.61 square meters,

respectively, in the matrix inversion approach. However, the av-

erage and variance of the localization error in the MLE approach

are 1.77 meters and 1.55 square meters, respectively. Given the

bene�ts of the matrix inversion approach in terms of both time

complexity and the localization error, we select this approach to

localize a single transmi�er.

Next, we analyze the performance of SPLOT for multiple trans-

mi�ers. To create the changes in number and locations of trans-

mi�ers, we use the two state continuous time Markov chain and

�nd the on and o� states of each transmi�er for 1000 seconds. �e

results are obtained by taking average of 100 di�erent trials of trans-

mi�ers in on and o� states over 1000 seconds. We assume that only

one transmi�er is turned on at any instant, although once turned

on at di�erent time instants, multiple transmi�ers can be transmit-

ting simultaneously. However, we do consider the scenarios where

multiple transmi�ers can be simultaneously turned o�.



Table 2: Localization error in Matrix inversion and MLE ap-
proaches for one transmitter in the open environment with
no mobility.

Transmi�er Localization error(m)

Matrix inversion MLE approach

TX1 1.41 1.01

TX2 0.5 1.03

TX3 1.11 0.97

TX4 1.41 5.08

Number of transmitters: We consider the impact of maximum

number of transmi�ers on the performance of SPLOT. We set the

maximum number of transmi�ers to 1, 2, 3, and 4 in the open

environment. Figure 3 shows the changes in the average localiza-

tion error of SPLOT and �asi EM with the maximum number of

transmi�ers in open environment. To �nd the localization error

of �asi EM, we provide the actual number of transmi�ers as an

input parameter. Also to �nd the average localization error, we

run 1000 trials of �asi EM and take the average over these trials.

�e average localization errors shown in Figure 3 are over di�erent

combinations of transmi�ers in the open environment.

Figure 3 shows that the average localization error increases sub-

stantially with the increase in the number of transmi�ers in the

�asi EM approach. However, the average localization error of

SPLOT is at or less than 1 meter, even though SPLOT also estimates

the number of transmi�ers (unlike �asi EM, SPLOT is not pro-

vided the number of transmi�ers as an input). Interestingly, we do

not observe any penalty for increasing the number of transmi�ers

being located.

Next, we compare the running time of SPLOT with that of �asi

EM in the open environment. Table 3 shows the running time of

these two approaches for a trial of 100 seconds of the transmi�ers

being in the on and o� states. �e �asi EM is run only for one

time. Table 3 shows that the running time of SPLOT is around

0.5 second. However, the running time of �asi EM is above 200

seconds and the increase in the maximum number of transmi�ers

substantially degrades the running time of �asi EM degrades. We

also expect the running time of �asi EM to degrade more with

increasing number of mobile sensing devices.

We also evaluate SPLOT in terms of average cardinality error

and average OSPA error. Table 4 shows the average OSPA error and

the average cardinality error of SPLOT with increasing maximum

number of transmi�ers. �is table shows that an increase in the

maximum number of transmi�ers increases the average cardinality

error. �e average cardinality error in the worst case is around 0.14

when the maximum number of transmi�ers is 4. �e OSPA metric

considers both the localization error and the cardinality error in

one metric. Table 4 shows that the average OSPA error increases

by a very small amount even when the cardinality penalty is set

to a very high value (д = 5m). �is is because the fraction of times

that the number of estimated transmi�ers | ˆθ | and the number of

actual transmi�ers |θ | di�er is very small.

Impact of transmitters’ locations: Next, we analyse the e�ect

of transmi�er locations on the localization approach. To �nd the

impact of transmi�er locations, we use the clu�ered o�ce data

Table 3: Running time of SPLOT and �asi EM in the open
environment.

Maximum number Running time (second)

of transmi�ers SPLOT �asi EM

1 0.5 211

2 0.5 985

3 0.7 2281

4 0.6 4169

Table 4: ϵ̄p (m), and ϵ̄c , of SPLOT in the open environment.

Maximum number ϵ̄p (m) ϵ̄c
of transmi�ers д = 1 д = 2 д = 5

1 0.79 1.01 1.01 0

2 0.91 1.17 1.17 0

3 1.04 1.36 1.45 0.05

4 1.14 1.51 1.74 0.14
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Figure 3: Average localization error versus the maximum
number of transmitters in the open environment for �asi
EM and SPLOT.

with the maximum number of transmi�ers equal to 2. We consider

di�erent combinations of two transmi�ers such that the Euclidean

distance between two transmi�ers varies from 3.5 meters to 18

meters. Figure 4 shows the relationship between the transmi�ers’

Euclidean distance and the average localization error. Here, each

data point is obtained by averaging over 100 di�erent trials, each

with its own randomly generated transmi�er on and o� chains.

Also, note the di�erent scales on the y-axes of the two plots. Figure 4

shows a linear correlation between the the transmi�ers distance

and the localization error in the �asi EM approach. However,

in SPLOT, there is no apparent correlation between the distance

between transmi�ers and the localization error. �e correlation

coe�cients between distance and average localization error in the

�asi EM and SPLOT are 0.72 and −0.02, respectively.

Regarding the cardinality error, there is a small correlation be-

tween the distance between transmi�ers and the cardinality error

in SPLOT. Our evaluations show that the correlation coe�cient of

distance and average cardinality error in SPLOT is around −0.35.

With increasing distance, SPLOT is more successful in �nding the

local maxima and converting the multiple transmi�ers localization

to a set of single transmi�er localizations. �erefore, the average

cardinality error decreases with increasing distance between trans-

mi�ers. Similarly, there is also a small correlation of −0.1 between

the distance and the OSPA error.
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Figure 4: Impact of transmitters’ locations in cluttered o�ce
(a) SPLOT, (b)�asi EM.

Impact of number of mobile sensing devices: �e number

of available mobile sensing devices plays a key role in our localiza-

tion approach. Selecting a large number of mobile sensing devices

for measurement increases the communication overhead between

the mobile sensing devices and the localization module. It also

increases the time taken and the energy consumption. On the other

hand, selecting a very small number of mobile sensing devices de-

creases the accuracy of our localization approach in terms of the

localization error, the cardinality error, and the OSPA error. In this

section, we examine the impact of the number of mobile sensing

devices on e�ciency of our localization approach and show how

we can maintain the localization accuracy by using a suitable sam-

pling approach to select mobile sensing devices among all available

mobile sensing devices.

Table 5 shows the average localization error and the average

cardinality error when the maximum number of transmi�ers is 3 in

the open environment with the number of mobile sensing devices

reduced from 14 to 12, 9, and 6 for three sampling approaches for

selecting mobile sensing devices (Random, Greedy, and Metropolis).

We make the following observations. First, the average localization

error changes by about 0.25 meters when reducing the number of

mobile sensing devices from 12 to 6 for all sampling approaches

and the average localization error is close to 1 meter even for 6

mobile sensing devices (see Table 5). �e Table 5 also shows that the

average localization error does not change too much by selecting

mobile sensing devices randomly. �is table also shows that the

average cardinality error increases with reduction in the number

of mobile sensing devices. �is is possibly because the number of

selected mobile sensing devices is not enough to cover the whole

area and the localization approach is not able to detect the transmit-

ters located in the uncovered area. Moreover, the results of random

sampling in Table 5 show that the location of mobile sensing devices

directly e�ects the cardinality error. In other words, we need to

have enough mobile sensing devices to cover the whole area to be

able to detect all available transmi�ers. �ird, the results of average

cardinality error for Greedy sampling show that by reducing the

number of mobile sensing devices and selecting a good sampling

approach, we can still have a small cardinality error. Finally, this

table also shows that for the open environment where nodes are

distributed non-uniformly, the Greedy sampling preforms be�er

than the Metropolis sampling approach.

Table 5: ϵ̄l (m), and ϵ̄c , of SPLOT with di�erent numbers of
mobile sensing devices and three transmitters in the open
environment.

Number of Random Greedy Metropolis

mobile sensing devices ϵ̄l (m) ϵ̄c ϵ̄l (m) ϵ̄c ϵ̄l (m) ϵ̄c
14 0.35 0.05 0.35 0.05 0.35 0.05

12 0.89 0.04 0.86 0.02 0.89 0.03

9 0.95 0.14 1.03 0.05 0.97 0.09

6 1.16 0.33 1.09 0.07 1.12 0.23

Table 6: ϵ̄l (m), and ϵ̄c , with di�erent numbers ofmobile sens-
ing devices and two transmitters in the cluttered o�ce.

Number of mobile sensing devices 40 35 30 25 20 15 10 5

Greedy

ϵ̄l (m) 1.47 1.64 1.90 2.14 2.01 1.96 2.02 2.24

ϵ̄c 0.03 0.04 0.04 0.07 0.1 0.23 0.36 0.49

Metropolis

ϵ̄l (m) 1.47 1.57 1.68 1.79 1.89 1.98 2.02 1.96

ϵ̄c 0.02 0.03 0.04 0.06 0.1 0.16 0.25 0.43

Next, we evaluate the impact of number of mobile sensing de-

vices in the clu�ered o�ce. �e maximum number of transmi�ers

is 2 and we vary the number of mobile sensing devices between 5

to 40 with increments of 5. Table 6 shows average localization and

cardinality errors in the clu�ered o�ce. We make the following

observations. First, the average localization error varies from 1.42

to 2.24 meters. However, the average cardinality error increases

relatively substantially with reduction in the number of mobile

sensing devices. Second, for the clu�ered o�ce area where the

mobile sensing devices are located uniformly in the environment,

Metropolis sampling preforms slightly be�er than greedy sampling.

�ird, Table 6 shows that by reducing the number of mobile sens-

ing devices from 42 to 25 and using either of Metropolis or greedy

sampling approaches, we can keep the localization error close to 2

meters and the cardinality error to about 0.06. Fourth, the results

of Table 6 shows that 5 mobile sensing devices are not enough

to cover the whole area in the clu�ered o�ce environment. As

this table shows, even by selecting the Metropolis sampling the

average cardinality error is 0.43 if we only select 5 mobile sensing

devices. As we discussed earlier, the determination of the number

of mobile sensing devices required is done by the localization mod-

ule. Generally, there is always a trade o� between the accuracy of

the localization algorithm, and the communication and processing

overheads. Depending on the importance of each of these parame-

ters and the localization results, the localization module makes a

decision about the number of required mobile sensing devices.

Comparison of SPLOT and �asi EM in the cluttered of-
�ce: With the help of our experimental results, we have shown,

earlier in this section, that SPLOT preforms be�er than �asi EM

in the open environment. However, the number of transmi�ers and

mobile sensing devices in the open environment is small and there

is no signi�cant noise or obstruction in the environment. In this

section, we compare SPLOT with the �asi EM in the clu�ered

o�ce environment, where we have 44 nodes that are located uni-

formly in the clu�ered o�ce and we can select any of these nodes

as a transmi�er or a mobile sensing device. Figure 5 shows the

CDF of average localization error in the clu�ered o�ce for di�erent



combinations of transmi�ers with maximum number of two trans-

mi�ers. �e average localization error on the x-axis corresponds

to the localization error for each combination of transmi�ers ob-

tained by averaging over 100 di�erent trails. Figure 5 shows that

the average localization error of SPLOT is signi�cantly less than

that of �asi EM. Furthermore, the average localization error for

any combinations of transmi�ers is 4.54 meters in �asi EM which

is much higher than the average localization error in SPLOT.
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Figure 5: CDF of average localization error (m) in the clut-
tered o�ce with maximum two transmitters.

6 IMPLEMENTATION
To further investigate its accuracy, we use commodity devices to im-

plement SPLOT. Our mobile sensing device consists of a commodity

smartphone/tablet that connects to an inexpensive Realtek don-

gle (RTL-SDR) [1] via a USB cable. �e RTL-SDR acts as a mobile

sensing device and collects raw In-phase/�adrature(I/Q) samples.

It operates in 25MHz-1750MHz with a sample rate up to 2.4MHz.

We use BaoFeng BF-F8HP (BF) [2] transmi�ers that transmits VHF

in 136MHz-174MHz and UHF in 400MHz-520MHz with up to 8W

power. We build an Android smartphone/tablet app that measures

spectrum in real time for a speci�ed frequency range and sampling

rate. Our app records the I/Q samples obtained from the RTL-SDR

and computes the RSS values. In our set up, the app generates a

(time, location, RSS) tuple every second. �e location is the GPS

coordinates for outdoor experiments. For indoor experiments, the

app �nds the location by indoor location �ngerprinting [6].

Data Gathering. We have 30 users participate in our experi-

ments for carrying both the transmi�ers and mobile sensing devices.

Each user has their own Android mobile sensing device with our

app installed on it. We collect data in di�erent indoor and outdoor

areas with at least two transmi�ers. �e areas of our experiments

are at least 30 m by 30 m
3

in size.

To determine the location and the transmission time of trans-

mi�ers, each user that carries a transmi�er, also carries a mobile

sensing device. Our app, on the device, records the transmission

time and the transmi�er location every second. In some experi-

ments, the transmi�ers transmit continuously, while in the other

experiments, we give the transmi�ers a transcript for transmission

that shows the time of transmission for each transmi�er. We create

the transcript to allows us to experiment with di�erent number

of active transmi�ers at di�erent times. In all experiments, we

con�gure the transmit power to 1W and the frequency band to

443MHz.

3
We make the experiment area small to evaluate SPLOT in an environment where

sensing devices receive signals from both transmi�ers and the interference is strong.

Test Environment. We preform di�erent indoor, outdoor ex-

periments for both stationary and mobile scenarios.

Engineering Building- We preform two experiments on the third

�oor of an engineering building. In both experiments, there are at

most 8 mobile sensing devices
4

that are placed in four corridors

of a square area of 40 m by 40 m. Two transmi�ers are located

in two opposite corridors. In the �rst experiment (Experiment

A), the mobile sensing devices are static while the transmi�ers

transmit continuously and move along the corridors for 7 minutes

at normal walking speed. In the second experiment (Experiment B),

the mobile sensing devices move randomly in di�erent corridors

and the transmi�ers use a transcript for transmission.

Food Court-We preform two experiments in an indoor 30 m by

50 m university food court area. In both experiments, there are

6 mobile sensing devices located uniformly along the food court

and both the transmi�ers and the mobile sensing devices are static.

Also, in both experiments the transmi�ers use a transcript for

transmission. In the �rst experiment (Experiment C), there are two

transmi�ers that are located on two ends of the food court at �rst.

�en, we gradually reduce the distance between the transmi�ers. In

the second experiment (Experiment D), there are three transmi�ers

located in three di�erent corners of the food court.

Outdoor Area-We preform two experiments in an outdoor area

of size 30 m by 50 m that is a part of a campus where both static

(buildings, trees) and mobile obstacles (pedestrians) are present

during the experiment. In both experiment there are at most 8 mo-

bile sensing devices. In the �rst experiment (Experiment E), both

transmi�ers and mobile sensing devices are static and the trans-

mi�ers use a transcript for transmission. In the second experiment

(Experiment F), both transmi�ers and mobile sensing devices are

moving. �e transmi�ers transmit continuously and move around

a circle for 7 minutes at normal walking speed. �e mobile sensing

devices also move around the circle while maintaining a distance

from the transmi�ers.

Results. We evaluate SPLOT using the data from our imple-

mentation
5

and compare its performance with that of �asi EM.

Figure 6(a) shows the average localization error of SPLOT and �asi

EM in experiments A to F. Figure 6(a) shows that the average lo-

calization error of SPLOT is substantially less than the �asi EM.

�e average localization error decreases in both SPLOT and �asi

EM when both transmi�ers and the mobile sensing devices are

static (Experiment C, D, E). �e average localization error of �asi

EM increases signi�cantly when transmi�ers and mobile sensing

devices are mobile (Experiment A, B, F). In comparison, the average

localization error of SPLOT is less than 5 meters.

Table 7 shows the average OSPA error and the average cardinality

error of SPLOT for experiments A to F. �is table shows that the

average cardinality error increases when both transmi�ers and

mobile sensing devices are mobile. Also, the average cardinality

error in Experiment D is greater than that in Experiments C and

E because of an increase in the number of transmi�ers. Table 7

also shows that the average OSPA error increases by a very small

amount even with high cardinality penalty (д = 5m).

4
Users are not able to run the app for the duration of the experiment for di�erent

reasons such as a ba�ery issue, etc.

5
We are not able to evaluate our sampling approaches using this data because of the

small number of mobile sensing devices.



Table 7: ϵ̄p (m), д = 5m, and ϵ̄c , of SPLOT for experiments A
to F.

Experiment A B C D E F

ϵ̄p (m) 5.39 5.05 4.19 5.03 3.79 6.38

ϵ̄c 0.18 0.11 0.04 0.16 0 0.06

Table 8: ϵ̄l (m), of SPLOT and �asi EM versus distance be-
tween two transmitters in experiment C.

Distance (m) 45 41 36 29 18 9 6

ϵ̄l (m)
SPLOT 3.38 3.82 3.67 4.92 2.9 3.68 1.16

�asi EM 18.72 17.34 14.43 11.31 8.7 4.96 5.66
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Figure 6: (a) Average localization error in experiments A to
F (b) Impact of number of transmitters in the experiment D.

Figure 6(b) shows the changes in the average localization error

of SPLOT and �asi EM for di�erent number of transmi�ers in

Experiment D. Figure 6(b) shows that the average localization error

increases with the increase in the number of transmi�ers in the

�asi EM approach. However, the average localization error of

SPLOT is at or less than 4 meters, even though SPLOT also estimates

the number of transmi�ers (recall that �asi EM assumes that the

number of transmi�ers is known).

Finally, we analyse the e�ect of transmi�er locations on the lo-

calization approach using Experiment C with the number of trans-

mi�ers equal to 2. We change the location of one transmi�er such

that the Euclidean distance between two transmi�ers varies from 6

meters to 45 meters. Table 8 shows the relationship between the

transmi�ers’ Euclidean distance and the localization error. Table 8

shows that there is no apparent correlation between the distance

between transmi�ers and the localization error in SPLOT. However,

the localization error decreases in the �asi EM with decreasing

distance between transmi�ers. �is is because �asi EM estimates

the locations of both transmi�ers close to one of the transmi�ers.

7 RELATEDWORK
Localization of multiple transmi�ers has been studied in existing

work [22, 23, 25, 26, 30]. However, to the best of our knowledge, this

paper is the �rst to develop and evaluate a localization approach that

minimizes time complexity without signi�cantly compromising lo-

calization accuracy in order to simultaneously locate unauthorized

transmi�ers.

�ere are a great number of works that have focused on select-

ing a set of sensor nodes to provide the maximum coverage in

wireless sensor networks (e.g., [8, 11, 39]). �ere are also a few

existing works that consider both incentive and the coverage prob-

lem [15, 20, 40]. However, unlike our work, none of these existing

works consider mobility, truthfulness, and the coverage problem all

together. While [16] a�empts to maximize the expected coverage

for long-term participation, it does not apply to mobile environ-

ments where mobile sensing devices can be too temporary.

Recently, crowdsourcing using low-cost commodity radios has

been used for spectrum monitoring (e.g., using RTL-SDR and smart-

phone [10, 28, 42], RTL-SDR and Raspberry Pi [32]), white space

detection [35], and spectrum data decoding [9]. A few recent works

on low-cost spectrum monitoring focus on transmi�er identi�-

cation [12, 43] and localization for detection of spectrum o�end-

ers [27, 41]. However, these existing works do not address the

problems of multiple transmi�ers localization, sampling, and in-

centives, that we collectively address in our paper. �e localization

approach in [27] can only locate single static transmi�ers. How-

ever, our proposed localization approach, SPLOT, is able to locate

multiple static or mobile transmi�ers. �ere is also some exist-

ing work on detection of spectrum misuse using only specialized

hardware (e.g., USRPs [37] or spectrum analyzers [19]). However,

this existing work, like [13], focuses on only monitoring spectrum

usage and not on locating spectrum o�enders.

8 CONCLUSION AND FUTUREWORK
We presented and evaluated a framework to locate multiple trans-

mi�ers using crowdsourced measurements of received power. We

addressed two main challenges in this framework. First, we pre-

sented a simple yet e�cient and accurate method, SPLOT, for si-

multaneous localization of multiple transmi�ers using the received

power measured by the selected mobile sensing devices. Second,

we presented a sampling approach that determined the number

and locations of required mobile sensing devices for measurement.

Next, we enhanced our sampling to provide incentives for mobile

sensing devices. We experimentally evaluated our framework and

methods, and our results demonstrated the e�ciency and accuracy

of our approach.

Our work can proceed in the following directions. While evalu-

ating our methodology, we have not explicitly evaluated how well

the transmit power is estimated. We will perform this evaluation

as future work. Very importantly, we will also investigate the e�ect

of MIMO/beamforming as well as directional antennas on our lo-

calization methodology. Our approach assumes that mobile devices

report RSS measurements and location information correctly. We

will enhance our approach to make it robust against misreporting,

malicious or erroneous, of RSS and device locations. While we use

di�erent smartphones and tablets, they all have the same RTL/SDR

devices. In the future, we plan to study the impact of device het-

erogeneity on the quality of collected RSS measurements and its

aggregation.
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