
Mobile Live Video Upstreaming
Philip Lundrigan, Mojgan Khaledi, Makito Kano,
Naveen Dasa Subramanyam, and Sneha Kasera

Department of Computer Science
University of Utah

{philipbl, mojgankh, makito, naveends, kasera}@cs.utah.edu

Abstract—We design and build a system we call mobiLivUp,
that utilizes nearby smartphones to improve live wide-area video
upstreaming. In mobiLivUp, to distribute the video to nearby
devices, the video streaming device creates a small wireless
network using Wi-Fi Direct. Other devices then connect to this
network. Parts of the video stream are sent to these connected
devices, which then upload their parts to a location in the
wide-area network using their cellular connections. We develop
algorithms and methods to effectively distribute video data
to nearby nodes and for incentivizing cooperation from these
nodes. We test our system through trace-driven simulation and
implementation in various settings. Our experiments show that,
in general, mobiLivUp increases the aggregate video throughput,
depending on the number of nodes forwarding data and their
data rates.

I. INTRODUCTION

Smartphones have opened up new possibilities, from the
way we organize our lives, to the way we communicate with
each other. With smartphone cameras capable of capturing
high definition video, we are able to communicate in more
powerful ways. An example of this is live streaming video
from a mobile device. Live streaming video allows people
to share in an experience together, at the same time. Live
streaming has become a popular activity for consumers with
the advent of apps like Periscope [1] and Meerkat [2]. In such
apps, a user shares a link to their live stream with friends
through social media like Facebook or Twitter. Friends can
connect and watch the video stream in real-time, commu-
nicating with the person live streaming through comments
and likes. Comcast has recently announced that it will allow
customers to live stream video from their XFINITY Share
mobile app to another user’s cable box [3]. Another example
of a use for live streaming video is live action sports using
small recording devices, like the GoPro Hero [4]. Some of
these small devices are now equipped with transmitters that
can broadcast video to cellular capable devices for uploading
in real-time. Live streaming video opens up possibilities to
new applications that have not been possible before.

While live video can be upstreamed at a high quality
over high bandwidth Wi-Fi links, the same cannot be said
about video transmission over cellular links for the following
reasons. First, a cellular connection cannot always support
the video data rate. Cellular networks have a difficult time
keeping up with the demands of smartphone data usage [5]
and video streaming perpetuates this problem. Furthermore,
cellular networks (as with most networks) have been optimized

for fast download speeds, but not upload. Second, spatio-
temporal variations in cellular channel conditions can reduce
the data rate in unpredictable ways. Even when standing still,
the data rate of a cellular connection can vary dramatically [6]
[7] over time. This makes it hard for any variable video rate
algorithm to work effectively. Third, smartphone video quality
is increasing faster than that of cellular connections. Each year,
new phones are equipped with better cameras and this is not
slowing down. Ultra HD or 4K cameras are already starting
to be commonplace in new smartphones [8]. Higher quality
video requires a higher cellular data rate.

In this paper, we address the increasingly important problem
of upstreaming live video over cellular links in the absence
of infrastructure Wi-Fi networks. Specifically, we design and
build a system, that we call mobiLivUp, that utilizes nearby
smartphones and their cellular bandwidth collectively to ef-
fectively increase the live upstream bandwidth. Due to the
nature of cellular networks, each mobile device is guaranteed
some slice of the cellular bandwidth. The use of multiple
devices to transmit on the wireless medium in parallel, without
interfering, can enhance the aggregate video transmission rate.

mobiLivUp takes advantage of a smartphone’s multiple
wireless interfaces. In mobiLivUp, to distribute the video to
nearby devices, the video streaming device creates a small
wireless network, using Wi-Fi Direct [9].1 Other devices then
connect to this Wi-Fi Direct network. Parts of the video stream
are sent to these connected devices, which then upload their
parts to a location in the wide-area network using their cellular
connections. The following advantages are gained by using
multiple cellular connections:

i. The total aggregate throughput increases as more cellular
connections are used. Each cellular connection contributes its
data rate which when combined together, allows the streaming
device to stream video as if it had a higher data rate.

ii. The throughput is stabilized as more cellular connections
are used. As stated earlier, cellular networks can have highly
fluctuating data rates. This effect is minimized by combining
multiple cellular connections together. For example, when
more cellular connections are used and spatial diversity is
higher, the less likely it is for each connection to fluctuate
in the same way, causing the aggregate data rate to be more
smooth than the individual fluctuating data rates.

1Does not require a Wi-Fi infrastructure network.

iii. Using multiple cellular connections allows for cellu-
lar provider diversity. When two or more different cellular
providers are used, the difference in cell tower placement
and network particularities will lead to a more stable video
streaming experience. For example, in a given location, one
cellular provider might have a dead spot, but another cellular
provider might not [10].

Using multiple mobile devices to cooperatively download
stored data (but not upload live video) has been studied in
prior work. To the best of our knowledge, mobiLivUp is the
first system that deals with uploading live video data by using
multiple neighboring nodes in real-world scenarios.

Cooperative live video uploading presents challenges that
have not been addressed in past work. The most critical of
these challenges is to ensure that video streaming content
traveling through multiple paths arrive at the destination in
the correct sequence. Without intervention, the video data
will arrive out of sequence, rendering the video unplayable.
Receive buffers can be used to relieve this problem to a
certain point, but if the receive buffer is too big, the video
playback will not be live. Buffering alone can not solve this
problem. mobiLivUp uses a novel algorithm to intelligently
distribute video packets between cooperating neighboring de-
vices, responding quickly to changes in cellular data rates.
Our distribution algorithm also incorporates a mechanism to
incentivize devices to forward data. With the incentive model,
nodes that participate in mobiLivUp are paid for their usage
and everyone benefits as a result.

We evaluate mobiLivUp in three ways. First, we implement
mobiLivUp in the ns3 simulator to test and evaluate the
method by which we distribute data to forwarding nodes.
We also use the simulator to test our incentive model and
demonstrate its functionality. Second, we create a wireless
testbed which allows us to test the system under controlled
conditions, but with more realistic conditions than simulation.
Third, we deploy our system while traveling on a commuter
train. Our experiments show that, in general, mobiLivUp
increases the aggregate video throughput, depending on the
number of nodes forwarding data and their data rates. In the
case of the commuter train experiment, with two smartphones,
mobiLivUp increases the video throughput by up to 88.6% in
comparison to that obtained using only one smartphone.

II. RELATED WORK

The idea of using multiple nearby devices in cooperation to
share cellular connections has been used for cellular offload-
ing [10] and video downloading. MicroCast [11] is an example
of using Wi-Fi or Bluetooth to cooperatively download a
video using multiple cellular connections. The use cases of our
system and MicroCast seem similar, but there are significant
differences. The biggest difference is that MicroCast does not
deal with live video data. This allows for different parts of
the video to be indefinitely buffered by individual phones.
MicroCast is concerned about getting the whole video to all
devices, which leads to their focus on a dissemination algo-
rithm. Our system is only concerned about getting the video

from the video source to a destination. We use other devices
as the means to an end, whereas MicroCast uses the devices
as clients. Lastly, MicroCast uses a modified wireless driver,
but our system uses standard Wi-Fi Direct. This increases the
deployability of our system since no changes need to be made
to the operating system for it to work. MicroCast also assumes
that all peers remain static during the video download, whereas
with our system, we do not make that assumption. We assume
a setting in which peer nodes can come and go.

MultiPath TCP (MPTCP) [12] allows for data to be trans-
ferred by different interfaces on a device. However, MPTCP
is limited to the number of interfaces that are on the device,
while our system can scale up to the number of devices in
close proximity that are willing to cooperate. One could use
emulation to add an interface for each wireless peer to allow
for normal use of MPTCP. As far as we know, interface
emulation for wireless clients has not been implemented on
Android and is beyond the scope of this project. In a recent
work, Lim et al. [13] use MPTCP in a simulation framework
for stored video and file transfer applications, but not for
transmitting live video. SCTP [14] is also limited to the
number of interfaces on one device and is not necessarily
optimized for live video transmission.

Both MPTCP and MicroCast use some form of queuing
to schedule which connection should download a specific
segment of data. With MPTCP, a shared receive buffer is
used between subflows. With MicroCast, each participating
device has a backlog of segments to be downloaded. A new
segment is assigned to the device with the smallest backlog. In
mobiLivUp, data queuing takes place on separate devices and
not on the device where the data is coming from. As a result,
explicit feedback by each device is required. In mobiLivUp,
this feedback is indirectly obtained from the gatherer, and the
splitter pushes data to the participating devices at specific rates,
adjusting the rates as necessary.

Carrier aggregation [15] is a technology, part of LTE-
Advanced, that allows for a device to receive multiple bands,
increasing that device’s data rate and therefore throughput.
We use multiple cellular devices, each receiving their own
band, to transmit the data. However, there are two important
differences. First, with carrier aggregation, the amount of
bands dedicated to one device is controlled by the network
and not by the device itself. Our system gives control to the
device for the number of bands it wants to use to upload
video. Second, our system allows for both spatial diversity and
cellular provider diversity. The devices used in our system can
be at better radio locations and on different cellular providers,
increasing the robustness of our system.

Like our system, Quality-Aware Traffic Offloading
(QATO) [10] allows a mobile node to offload its data
upload to another nearby mobile node with a better network
connection. QATO also suggests using Wi-Fi Direct for
transmission of data from the source to the neighboring node.
However, QATO only uses one mobile node amongst its
neighbors to offload uploading. While this limits the benefits
obtained from QATO, QATO does not have to deal with

Forwarder

Data Source
&

Splitter

Forwarder

Gatherer
Client

Internet

Fig. 1. General architecture of mobiLivUp. Data passes from the splitter to
forwarders, then to the gatherer through their cellular connections.

splitting and gathering. Importantly, QATO only experiments
with stored data, such as pictures, for uploading. Our system
is built for live video transmission.

Link-alike [16] studies the idea of having a wireless device
distribute upload data to multiple residential wired connections
for a higher aggregate upload rate. However, Link-alike has
wired connections. Also, mobiLivUp deals with live video data
which is not tolerant to delays, whereas Link-alike deals with
general uploaded data which can be buffered as needed.

III. ARCHITECTURE COMPONENTS

mobiLivUp consists of four major components: a splitter,
a forwarder, a gatherer, and a client. Figure 1 shows how
each component connects to the others. A data source (the
video streaming application) passes data to the splitter. The
splitter broadcasts its availability, allowing nearby peers who
are willing to forward data to connect. To keep the splitting
transparent to the client, a gatherer server is needed to act
as a proxy. The gatherer also collects statistics about each
forwarder and sends feedback to the splitter.

Each component is described below in more detail.

A. Splitter

The splitter takes data from the data source and splits it
between forwarding nodes. The splitter is started when a user
wants to stream video. When the splitter is first started, it
connects to the gatherer. The connection between the splitter
and gatherer stays open during the life of the splitter, acting
as a control channel for the splitter and gatherer. The gatherer
sends feedback to the splitter about each forwarder.

Using Wi-Fi Direct [9], forwarding nodes connect to the
splitter. Wi-Fi Direct is a technology used primarily by
smartphones to connect point to point, without having to be
connected to the same wireless network. With mobiLivUp, the
splitter acts as an access point allowing forwarding nodes to
connect to it.

When a forwarding node connects to the splitter, informa-
tion is sent to the forwarder, such as the internal IP address, a
unique identifier for the forwarding node, and the IP address
and port number of the gatherer, allowing the forwarding node
to forward data packets from the splitter to the gatherer. A
forwarding node in return sends the cost of using it to forward
data. This cost metric is explained in the Forwarder section
below. The splitter determines which forwarding nodes it will

use based on the cost and the data rate that forwarding node
can offer, as described in Section V-B. The splitter itself acts
as a forwarding node, using its cellular connection to send data
to the gatherer as well as using its Wi-Fi interface to distribute
data to forwarding nodes. The throughput of each forwarding
node is sent as feedback from the gatherer to the splitter.
This throughput estimate is end-to-end, taking into account
both the Wi-Fi Direct connection and the cellular connection.
The feedback loop also incorporates loss, as loss affects the
throughput. This means that no matter which wireless interface
is the bottleneck, the splitter will be able to adjust accordingly.

The splitter determines how much data to send to each
forwarder based on a distribution algorithm which is described
in Section V-A.

B. Gatherer

The gatherer, a server running in the cloud, receives data
from each of the forwarding nodes and the splitter, combines
the data together, and sends it to the client. It makes sure the
data packets are in the correct order before sending them to the
client. This is a necessary step since the packets can become
out of order due to the different paths and network conditions
they are traveling. The gatherer collects throughput statistics
for each of the forwarding nodes and sends it as feedback to
the splitter.

C. Forwarder

A forwarding node looks for a splitter to connect to through
Wi-Fi Direct. Once it has found a splitter to connect to
and received information about where to forward data, it
advertises its cost to the splitter. This cost represents the cost
of forwarding the data which affects the user’s data plan,
bandwidth, and battery life. The cost can adapt with respect
to all of these values and change as necessary. The idea is that
a forwarder user will charge more if their battery is low or if
they have a small amount of data left in their data plan. If the
splitter selects the forwarder, it forwards incoming data from
the splitter to the gatherer, through its cellular connection. The
forwarder is using both of its wireless interfaces at the same
time – Wi-Fi to receive data from the splitter and cellular to
send data to the gatherer.

IV. WI-FI DIRECT

mobiLivUp uses Wi-Fi Direct to create a local wireless
network for the distribution of video data from the splitter
to forwarders. It is important to understand the capabilities
of this wireless network as it has a significant role in the
performance of the system. Wi-Fi Direct allows for an easy
configuration of a wireless network by automating the access
point setup, authentication, and association, but ultimately, the
underlying 802.11 protocol is the same as a traditional Wi-Fi
setup (clients connected to an access point).

To test the capability of the Wi-Fi Direct link and smart-
phones, we send UDP traffic between two Android smart-
phones at different rates and monitor loss. We find that the loss
increases non-linearly as the data rate increases (see Figure 2).

0 5 10 15 20
Sent Data Rate (Mbps)

0

2

4

6

8

10

12

14

L
os

s
(%

)

Fig. 2. Loss characteristic as the send data rate increases. The shaded region
is the ideal throughput with minimal loss.

We run an Android version of Wireshark on the sender and
determine that the loss is not happening at the sender. To rule
out losses on the wireless link, we run similar experiments
using a laptop sending to another laptop at the same data rates.
In these experiments, we observe that there is no loss. We
conclude that the losses are happening at the receiver buffer of
the smartphone. Based on these findings, 7 Mbps is the highest
data rate with reasonable amount of loss (0.42%). While the
high receiver loss is an interesting finding, it is not a problem
for our system given that cellular upload rates are typically
below 7 Mbps [17]. Moreover, the end-to-end feedback loop
from splitter to gatherer in our system can account for any
bottleneck along the path and the distribution algorithm will
adjust appropriately.

V. DISTRIBUTION ALGORITHM AND INCENTIVE MODEL

Two important aspects of our system are how to distribute
data to forwarding nodes and how to motivate forwarders to
participate in our system. Using both of these components,
mobiLivUp is able to dynamically select which forwarding
nodes to distribute data to and utilize those selected forwarding
nodes fully.

A. Distribution Algorithm

As described in the previous section, the splitter takes data
from the video source and distributes the packets to itself
and other forwarding nodes that were selected based on our
incentive model. To suitably distribute video packets among
different nodes based on their cellular data rates, we assign a
weight2 to each node. There are different approaches on how
to update the weights according to the network conditions. The
goal of updating the weights is to maximize the throughput of
all of the forwarding nodes, thus maximizing the utility of each
node. Because of the dynamic nature of cellular networks, it
is not always possible to have the weights set to the optimal
values. In this situation, there is a trade-off between being
aggressive and reacting too quickly to temporary changes.

In the context of our distribution algorithm, we treat the
splitter node as a forwarder node. We assume that the data
source will be able to adapt the video to match the aggregate

2This weight is a different value than described on the Incentive Model
section (V-B).

1: while splitter is running do
2: receive feedback from gatherer
3: determine selected forwarders based on feedback
4: Atotal = calculate total actual based on feedback
5: if Atotal ≥ Vmax then // Equalize state
6: j = forwarder with highest actual throughput
7: k = forwarder with lowest actual throughput
8: Ej = Aj − ∆
9: Ek = Ak + ∆

10: continue
11: for all i in selected forwarders do
12: Ei = expected throughput for ith forwarder
13: Ai = actual throughput for ith forwarder
14: if Ai ≥ Ei then // Increasing Rate state
15: Ei = Ai + ∆
16: else if Ai > A′

i then // Constant Rate state
17: // Do nothing
18: else // Reducing Rate state
19: Ei = Ai ∗ (1 − σ)
20: A′

i = Ai

Fig. 3. Distribution algorithm

throughput of the forwarders, to a certain limit. In other words,
if we are only able to send at 1 Mbps, in aggregate, we expect
the data source to degrade the video to match it.

Our distribution algorithm is shown in Figure 3. The feed-
back that the gatherer sends to the splitter contains the actual
throughput for each of the forwarders. The splitter also knows
the expected data rate of each forwarding node based on the
input data rate of the video source and the weight of each
forwarding node. The splitter chooses which forwarders to use
based on their actual throughput and our incentive model. Let
Ei and Ai be the expected throughput and actual throughput
for the ith selected forwarding node. mobiLivUp’s distribution
algorithm determines how to adjust the expected throughput,
Ei, updating the weight for that forwarding node, causing the
ith forwarder to receive Ei from the data source. The algorithm
contains three states: increasing, reducing, and constant. Each
state is explained below (see lines 12–20 of Figure 3):

Increase A node is in the increasing state when Ai ≥ Ei.
When a forwarding node is in the increase state, its expected
throughput gets increased by a small constant value, ∆, such
that Ei = Ai + ∆.

Constant A forwarding node is in the constant state when
Ai < Ei and Ai > A′

i, where A′
i is the previous actual

throughput of the ith forwarder. In this state, the expected
value, Ei, stays the same.

Reduce Reduce state is when Ai < Ei in which Ei =
Ai ∗ (1− σ), where σ is the decrease factor.

We discuss the exact values of ∆ and σ in section VII-A.
This algorithm is similar to additive increase, multiplicative
decrease (AIMD) technique, but it has the important distinc-
tion of containing a third state, constant. This is an important
discovery as we implement and test this algorithm. Under
certain conditions, a forwarder’s throughput can be increasing,
but less than Ei (Ai < Ei). There are many reasons why this
occurs. Some of the factors that affect this are how much the
expected throughput value (Ei) is increased by in the increase

100 200 300 400 500 600 700 800 900 1000
Feedback Interval (ms)

1500

2000

2500

3000

3500

4000

T
h

ro
u

gh
p

u
t

(K
b

p
s)

Two States

Three States

Fig. 4. Comparing using two states (increase and reduce) to three states
(increase, reduce, and constant) for different feedback intervals.

state (∆), how big the window for calculating throughput is
at the gatherer, and how often feedback is sent to the splitter
from the gatherer (feedback interval). With only two states,
a forwarding node’s throughput could be increasing such that
A′

i < Ai < Ei, but still be considered in the reduce state and
be incorrectly lessened. The extra state, constant, takes care
of this scenario.

Figure 4 compares using a two state AIMD distribution
algorithm to the three state distribution for different feed-
back intervals. We use a cellular trace with three forwarding
nodes for both distribution algorithms to calculate the average
throughput for a given feedback interval. See section VII for
how we collect the cellular trace.

When the feedback interval is below 500 ms, the two state
distribution algorithm performs poorly relative to the three
state distribution algorithm. This is because the feedback is
coming too quickly, not allowing enough time for a forwarding
node’s throughput to increase to the expected value, causing
the distribution algorithm to classify some forwarding nodes
in the reduce state. It is only when the feedback interval
goes above 500 ms that you seem performance similar to
the three state approach. The 500 ms value is specific to this
particular cellular trace and can change based on the network
conditions. Using the three state approach allows any feedback
interval to work with peak performance. For our simulations
and experiments we use a feedback interval value of 100 ms.

When the maximum video data rate is reached (a value set
by the video streaming application), such that Atotal ≥ Vmax,
where Atotal is actual throughput of each forwarder summed
together and Vmax is the max video rate, the distribution
algorithm stops and enters a phase where it tries to equalize
the data rates of each of the forwarding nodes (see lines
5–10 of Figure 3). This is done by lowering the expected
throughput of the highest forwarder (Ehigh = Ahigh − ∆)
and raising the expected throughput of the lowest forwarder
(Elow = Alow +∆). If the forwarder with the lowest expected
throughput is able to support the extra throughput (Atotal ≥
Vmax), then the process will be done again. If the forwarder is
unable to handle the extra throughput (Atotal < Vmax), then
the total throughput of each forwarder will not be greater than
the maximum video data rate and the distribution algorithm
will start again. By equalizing the throughput of each selected

forwarder, the whole system is more stable. Rather than having
a few forwarders at high throughput (possibly close to their
limits), it is better to equally share the throughput across
many forwarders so all are below their respective limits. If
any fluctuations occur on a link, the other forwarders will be
able to absorb the extra throughput. By proactively equalizing
the rates, we are protecting against later adjustments (and
loss) due to under-performing forwarders. mobiLivUp uses
coarse granular feedback and hence is robust to temporary
disruptions in cellular connectivity. For the same reason, it
uses less cellular bandwidth for controlling the system.

B. Incentive Model

In mobiLivUp, we propose a pricing based method that
provides incentives for the forwarding nodes to cooperate. We
assume that all nodes are rational and selfish. A forwarding
node’s main goal is to maximize its profits but not to harm
others. We use a simple auction to model cooperative band-
width sharing. In our auction, the splitter holds the auction
among n nearby forwarding nodes called players. Each player
i has an individual private value ci which is the cost of sending
one unit of data to the gatherer using the cellular connection.
ci depends on various parameters including available cellular
bandwidth, cellular data rate, and battery level on the phone.
Our auction works as follows.

The splitter sends a request to the forwarding nodes and
the forwarding nodes reply by sending their bids, ci, to
the splitter. The splitter determines the allocation rule and
the payment mechanism based on the received bids and the
received feedback from the gatherer about the actual data rates
of the forwarders. Due to the changes in the actual data rates,
the splitter holds auction every time it receives feedback from
the gatherer. The forwarding nodes can also change their bids
in each auction and it is possible that the number of forwarding
nodes varies in different auctions because of the mobility of
mobile phones. Our auction provides incentive for forwarding
nodes to cooperate by implementing a dominant equilibrium.
In this setting, each forwarding node’s best strategy is to report
its actual cost ci, regardless of other player’s strategies. Each
player’s utility is defined as its total received payment minus
its cost of participation.

Problem Formulation And Solution: In our auction, the
splitter must consider both the cost and the actual data rate
in selecting forwarding nodes. Let wi ∈ [0, 1] be the weight
that is assigned to the player i based on the gatherer feedback.
We define a score si for forwarding node i, as si(ci, wi) = wi

ci
.

Note that in this equation, si depends on both the cost ci and
the actual data rate wi. The splitter uses these scores to select a
set of forwarding nodes. We obtain the utility of player i with
score si from the following formula: ui(si) = pi(asi)− ci.

The number of players that are selected by the splitters
depends on a budget limit B, the maximum amount that the
splitter can pay per second. Depending on the type of the
service, the splitter may choose different values for B3.

3The budget limit, B can be increasing function of the total data rate,∑k
i=1 wi, where k is the number of selected players.

The splitter determines the allocation and payment based on
the scores of forwarding nodes under the following conditions:
Optimal. The mechanism should maximize the total score, i.e.,
total actual data rates divided by total costs.
Incentive Compatibility. There is no selfish forwarding node
that has an incentive to lie about the cost, ci.
Individual Rationality. The utility of all forwarding nodes
should be non-negative to provide incentive for them to
participate in the game.

Our problem description is as follows:

max
a

n∑
i=1

asisi

s.t.

∀i, c′i ∈ C, pi(asi)− ci ≥ pi(as′i)− ci (1)

∀i, pi(asi)− ci ≥ 0 (2)
n∑

i=1

pi(asi) ≤ B (3)

Here, asi ∈ {0, 1} represents the allocation to player i with
score si, when the splitter assigns data to the player, asi =
1, otherwise, asi = 0. Also, pi(asi) represents the amount
that the splitter pays to the player i under allocation rule asi .
Equation 1 provides incentive compatibility for cost4. Equation
2 is for individual rationality, and Equation 3 captures the
budget limit of the splitter. The splitter orders the forwarding
nodes based on their scores decreasing scores (si). Then, it
selects the largest number of forwarding nodes {1, 2, . . . , k}
such that ∀i ∈ {1, 2, . . . , k}, ci < Bwi∑k

i=1 wi
.

The payment, pi(asi), is obtained from the following for-
mula:

pi(asi) = min(
wick+1

wk+1
,

Bwi∑k
i=1 wi

) (4)

Here, k + 1 is the index of the player with the largest
score after the selected k players. In equation 4, the payment
increases linearly with the forwarding node’s actual data
rate, wi. The proofs of incentive compatibility and individual
rationality have been left out due to space constraints.

VI. IMPLEMENTATION

The splitter and forwarder components of our system are
written as an Android application in Java on Samsung Galaxy
S4 phones. For the data source component, we used Spy-
droid [18], an open source project that can stream a smart-
phone’s camera video to a client either through HTTP or
RTSP. The gatherer component is implemented on a server
in Python. When the splitter is initially started, it creates a
TCP connection with the gatherer. This connection acts as a
way for control messages to be sent back and forth between
the two components. On this connection, feedback is sent from
the gatherer to the splitter. For a client to connect to a data
source, it connects through the gatherer. The gatherer forwards

4Since the data rate of each forwarding node is obtained from the gatherer
feedback, we do not need to provide incentive compatibility for the data rate.

all messages from a client to the splitter. The splitter then
forwards messages to the data source.

When the RTSP connection has been established and data
starts being sent to the splitter from the data source, the splitter
distributes packets based on the available data rate of each of
the forwarders. To keep track of the ordering of the packets,
a sequence number is added to each packet. RTP contains a
sequence number, but we did not want to be dependent on any
particular application protocol so we do not use it. The splitter
also adds the MAC address of the forwarding node it is using
to send the packet. This allows the gatherer to keep statistics
of how each forwarding node is performing. The gatherer
calculates the throughput of each forwarding node and sends
this back as feedback to the splitter. Based on the feedback,
the splitter changes the weightings of the forwarding nodes
to match their actual data rate. The gatherer sends feedback
to the splitter every 100 ms. The weight of the forwarding
node and the send time are also added to the packet header
for debugging and data collection purposes.

The gatherer buffers received packets to make sure they
are in order. Once packets are in the right sequential order,
it sends the ordered packets to the client. Since we are using
RTP, which uses UDP, there is no way of telling if a packet has
been lost or if it is still in transition. This presents a problem
to the gatherer to know if it should wait for a missing packet
to arrive or skip it. To solve this, individual queues are kept for
each forwarding node. When a packet is received, it is put into
its corresponding queue. If sequence numbers of all the heads
of the different queues is greater than the sequence number
of the packet in question, then we know the packet must have
either been lost or severely reordered by the network and can
be counted as a loss. This allows the gatherer to skip that
packet and continue to put the rest of the packets in order.

VII. EVALUATION

We evaluate mobiLivUp using ns-3 simulations and an
implementation on smartphones. There are three purposes for
evaluating mobiLivUp in simulation: (i) to test our design with
a large number of forwarding nodes (in comparison to only
two nodes in our implementation) under various conditions,
(ii) to determine the best parameters for the distribution
algorithm, and (iii) to develop and understand the interaction
between the video distribution algorithm and the incentive
mechanisms. We collect and use cellular data traces and Wi-Fi
Direct traces to give us realistic wireless characteristics such
as data rates and loss.

We also implement the splitter and forwarder as Android
applications in Java on two Samsung Galaxy S4 phones. We
implement our gatherer on a server in Python. We use our
implementation in the following two ways. First, we create an
emulation platform that emulates cellular forwarding nodes
using Wi-Fi, i.e., the forwarding nodes transmit data using
Wi-Fi (and not a cellular network). Here, as in our simulation,
we determine the transmit data rate of the forwarding nodes
using our traces. However, unlike our simulation, we use
real live video transmission from our Android phones to the

TABLE I
SUMMARY OF SIMULATION RESULTS

of Individual Aggregate Jitter
Forwarders Phone Goodput (ms)

(Kbps) (Kbps)
3 2010.23 3615.27 3.07225
5 2197.61 5508.57 1.99712

10 2573.50 8711.93 1.32504

gatherer. The purpose of this emulation is to validate our
implementation in a more realistic setting (compared to the
simulation), while still having a controlled environment.

Finally, we use our implementation with Wi-Fi Direct and
cellular links in a real-world live video transmission during a
commuter train ride to evaluate the benefits of our approaches
in real time under real conditions. We present the results of our
simulation, implementation, and commuter train ride below.

A. Simulation-Based Evaluation

We implement mobiLivUp in the ns3 simulator. We first
determine the best increase rate and decrease factor for our
distribution algorithm.

Increase Rate (∆), Decrease Factor (σ) : Using a cellular
trace, we test our algorithm with a variety of forwarding
nodes and increase rates. Figures 5a and 5b show the average
throughput and loss of the cellular trace compared to the rate
increase amount (in Kbps). The different lines represent differ-
ent amounts of forwarding nodes used in the simulation. We
observe that larger the increase amount higher the throughput
and higher the loss. Intuitively, the higher the increase value,
the more aggressive the probing gets, leading to increased
throughput but more loss. Interestingly, the throughput levels
out at around 400 Kbps, however the loss rate does not. Based
on these findings, we choose an increase rate of 200 Kbps in
our evaluation. It has an increased throughput compared to
lower values, but the loss rate is still low.

Similar to the increase rate, we use our simulation to
determine the best decrease factor. Figures 5c and 5d show
the average throughput and loss compared to changes in
the decrease factor. Our results show that a decrease factor
between 0.2 and 0.25 allows us the best combination of high
throughput and low loss.

We now test our distribution algorithm under various net-
work conditions. Due to space constraints, we only show
our results for one of the cellular traces (the same one we
use for determining our increase rate and decrease factor).
Table I shows the overall results using different amounts of
forwarding nodes. Figure 6a shows the specific throughput of
each forwarding node for the five forwarder case.

Compared to the individual phone with the highest through-
put, mobiLivUp performs 79.8% better when using three
forwarders, 150.7% better when using five forwarders, and
238.5% better when using ten forwarders. Figure 6a gives a
clearer idea of how much each forwarder contributes to the
overall throughput. The splitter node contributes the most, fol-

TABLE II
SUMMARY OF EXPERIMENT RESULTS

Scenario Method
Median Median

Goodput Jitter
(Kbps) (ms)

Varied Data Rate
One Phone 2242 0.067
mobiLivUp 2200 1.854

Indoor Cell Trace
One Phone 553 11.670
mobiLivUp 1067 716.7

Train
One Phone 1838 0.448
mobiLivUp 3077 1.452

lowed by forwarder one. All the other nodes contribute about
the same amount of throughput to the aggregate throughput.

To understand how our distribution algorithm works with
mobility, we use the SLAW mobility model [19] to determine
when nodes connect and disconnect to the splitter over the
course of a one hour simulation. Forwarder one stays con-
nected to the splitter for the whole simulation. Forwarder two
comes in at 15 minutes and leaves at 18 minutes. Forwarder
three connects at the start of the simulation and disconnects
after 51 minutes. Forwarder four comes in at 53 minutes and
stays until the simulation ends. Finally, forwarder five comes in
at 45 minutes and leaves at 52 minutes. Figure 6b shows how
our algorithm adapts as forwarders connect and disconnect.

To demonstrate and test the function of our distribution
algorithm when it has achieved the maximum throughput, we
run a simulation using the following conditions. The splitter
and all forwarding nodes that connect have 1400 Kbps of
available throughput. The splitter starts out alone sending
below the maximum video rate of 1500 Kbps. Forwarder
one, two, three, and four connect at 15, 25, 35, and 45 sec-
onds respectively. As each forwarder connects, the aggregate
throughput is well above the maximum video data rate. As a
result, the throughput of each node is equalized. This behavior
can be seen in Figure 6c.

The results in Figure 7 show how the incentive model inter-
acts in the simulator. In this simulation, only three forwarding
nodes are used. Figure 7a shows the data rate limit of each of
the forwarding nodes (thick line) in relation to the data rate
the distribution algorithm has selected (thin line). Figure 7b
shows the score of each forwarding node (see Section V-B).
As the scores of the forwarding nodes change (based on how
much data rate they can provide and their cost), the splitter
selects different forwarders that can maximize the aggregate
data rate and stay under its budget. In Figure 7b, this occurs at
about 14 seconds and 21 seconds. This shows that the splitter
is able to dynamically select the best set of forwarders that
can provide the best value to it.

B. Wireless Testbed Evaluation

In this section, we look at the performance of mobiLivUp
under three different scenarios. For the testbed, instead of
using cellular connections to send data to the gatherer, Wi-

0 200 400 600 800 1000
Increase Amount (Kbps)

3000

4000

5000

6000

7000

8000

9000

10000

T
h

ro
u

gh
p

u
t

(K
b

p
s)

3 Forwarders

5 Forwarders

10 Forwarders

(a)

0 200 400 600 800 1000
Increase Amount (Kbps)

0

5

10

15

20

25

30

L
os

s
(%

)

3 Forwarders

5 Forwarders

10 Forwarders

(b)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Decrease Factor

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

T
h

ro
u

gh
p

u
t

(K
b

p
s)

3 Forwarders

5 Forwarders

10 Forwarders

(c)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Decrease Factor

0

1

2

3

4

5

6

7

L
os

s
(%

)

3 Forwarders

5 Forwarders

10 Forwarders

(d)

Fig. 5. (a) and (b) show the throughput and loss as the increase rate changes. (c) and (d) show the throughput and loss as the decrease factor changes.

0 10 20 30 40 50 60
Time (seconds)

0

2000

4000

6000

8000

10000

12000

T
h

ro
u

gh
p

u
t

(K
b

p
s)

Combined

Splitter

Forwarder 1

Forwarder 2

Forwarder 3

Forwarder 4

(a)

0 500 1000 1500 2000 2500 3000 3500
Time (seconds)

0

1000

2000

3000

4000

5000

T
h

ro
u

gh
p

u
t

(k
b

p
s)

Combined

Splitter

Forwarder 1

Forwarder 2

Forwarder 3

Forwarder 4

Forwarder 5

(b)

0 10 20 30 40 50 60
Time (seconds)

0

500

1000

1500

2000

T
h

ro
u

gh
p

u
t

(K
b

p
s)

Splitter

Forwarder 1

Forwarder 2

Forwarder 3

Forwarder 4

(c)

Fig. 6. Simulation results. (a) shows the throughput of individual forwarding nodes compared to the goodput of the system. (b) shows the distribution
algorithm adjusting to forwarders connecting and disconnecting. (c) shows the throughput of all forwarders are equalized when new forwarders are added.

0 5 10 15 20 25 30
Time (seconds)

0

500

1000

1500

2000

2500

T
h

ro
u

gh
p

u
t

(K
b

p
s)

Node 1 Actual

Node 1 Limit

Node 2 Actual

Node 2 Limit

Node 3 Actual

Node 3 Limit

(a)

0 5 10 15 20 25 30
Time (seconds)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S
co

re Node 1

Node 2

Node 3

(b)

Fig. 7. (a) shows the data rate limit, based on the cellular trace, and the
actual data rate, selected by the distribution algorithm. (b) shows the scores
of each forwarding node based on the incentive model.

Fi is used.5 Wi-Fi Direct is still used to connect the cellular
devices together. The testbed allows for the data rate of
individual forwarding nodes to be set for a specific amount
of time. Using the testbed, we can emulate different data rate

5Our data rates are low enough and do not saturate the Wi-Fi channel. Any
data rate loss due to wireless devices sharing the channel will not affect the
results of the testbed

conditions, allowing us to see how the system reacts. The
first scenario changes the data rate of each of the wireless
nodes (Section VII-B1), testing how our system reacts to large
changes in cellular conditions. In the second scenario, we
playback a cellular trace (Section VII-B2) to test how the
system responds to real conditions.

To measure the effectiveness of mobiLivUp, we use two
metrics: goodput and jitter. Goodput is the rate at which the
gatherer can send usable data to the client (in order video data).
Goodput captures the effect of out of order packets because
out of order packets need to be buffered before they can be
sent to the client. Having only two devices available to us, we
do not evaluate the incentive model using the wireless testbed.
Table II summarizes the data for each scenario, showing the
median for goodput and jitter. We present a more detailed
discussion of the results below.

1) Varied Data Rate: In this scenario, the data rate of the
splitter and forwarder start at 360 Kbps and 6 Mbps, respec-
tively. After 60 seconds, the splitter’s data rate increases to 6
Mbps. After 120 seconds, the forwarder’s data rate decreases
to 360 Kbps. Based on a study of throughput characteristics of
cellular networks [6], we select 360 Kbps and 6 Mbps because
they roughly represent the lower bound and average cellular
bandwidth. The big difference in data rate between the splitter
and gatherer help to illustrate any potential problems with out
of order packets. The results are shown in Figure 8a.

The purpose of this scenario is to see how quickly the
system can respond to changes in data rate. In this case, the
changes occur at the 60 and 120 second marks. This scenario
also tests how much the goodput is affected by these network
changes. The median goodput is 2200 Kbps. The aggregate
goodput is not much higher than the splitter or forwarder’s

0 50 100 150 200
Time (seconds)

0

500

1000

1500

2000

2500

3000
T

h
ro

u
gh

p
u

t
(K

b
p

s)

Splitter

Forwarder

Combined

(a)

0 50 100 150 200
Time (seconds)

0

500

1000

1500

2000

2500

T
h

ro
u

gh
p

u
t

(K
b

p
s)

Splitter

Forwarder

Combined

(b)

0 10 20 30 40 50 60 70 80
Time (seconds)

0

500

1000

1500

2000

2500

3000

3500

T
h

ro
u

gh
p

u
t

(K
b

p
s)

Splitter

Forwarder

Combined

(c)

Fig. 8. (a) shows the results of varied data rate experiment. (b) shows results of the cellular trace experiment. (c) shows the results of the train experiment.

throughput. This is due to the low data rate of the splitter
and forwarder, which is by design of the scenario. The results
show that mobiLivUp is able to transition from one forwarder
to another with minor dips in goodput.

2) Indoor Cellular Trace: The data rates used in this
scenario are calculated from a cellular trace. We collected data
to measure the maximum throughput of two cellular links at
the same time. The maximum throughput was then entered
into the wireless testbed to emulate the cellular environment.

In this particular trace, the data rates change dramatically
and at a rapid pace. The trace was collected deep inside
a building where cellular connectivity fluctuates. The rapid
changes make it harder for the distribution algorithm to
determine the data rate of each forwarding node and as a
result, at some points, the aggregate goodput is less than an
individual forwarding node’s throughput.

The throughput of the splitter and forwarder and the goodput
are shown in Figure 8b. mobiLivUp is able to maintain a
higher goodput compared to a single phone 67.98% of the time
with an average goodput of 1067 Kbps, compared to 553 Kbps
when using just one phone. The jitter of mobiLivUp is higher
than with one phone as expected due to it using multiple paths.
This high jitter can be overcome by waiting to play the video
for some amount of time. In this specific scenario, waiting
about one second to play the video is acceptable.

C. Train Ride
We tested our system on a train that travels to different

cities in the area. The train travels up to 79 mph and makes
a stop roughly every eight miles. We traveled a total of 90
miles, collecting data along the way, using two cell phones,
one acting as a splitter/forwarder and another acting as a
forwarder. Figure 8c shows the throughput of each of the nodes
as well as the goodput. The goodput exceeds the throughput
of both the forwarding nodes, except for two instances. The
displayed results only show a small portion of the data that we
collected on the train, while Table II takes into account all of
the data collected on the train. The results of this experiment
show that mobiLivUp is capable of producing almost ideal
aggregate throughput in real network conditions. mobiLivUp
performs better than one phone 88.6% of the time with a 67%
improvement in goodput.

In summary, in all of our experiments, mobiLivUp has a
higher goodput when compared to the performance of a single

phone, with the exception of the varied data rate experiment, in
which the single phone and mobiLivUp perform comparably
on average. Using mobiLivUp, we can have a much higher
quality of video but need to introduce a playout delay of only
a few seconds to deal with the higher jitter.

VIII. CONCLUSIONS

mobiLivUp is a novel system that provides greater aggregate
upload of real-time video data through using cellular connec-
tions of nearby neighbors. We designed a novel distribution
algorithm to distribute live video to nearby devices at their
maximum capacity. Using an incentive model, we can select
nearby devices to participate, in which both parties benefit.

REFERENCES

[1] “Periscope,” https://www.periscope.tv.
[2] “Meerkat,” https://meerkatapp.co.
[3] Comcast, “X1: Using XFINITY Share,” http://goo.gl/kNREgq.
[4] “GoPro,” http://gopro.com.
[5] Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic

Forecast Update, 2013-2018,” Tech. Rep., February 2014. [Online].
Available: http://goo.gl/ScBQaI

[6] Y.-C. Chen and et al., “Characterizing 4g and 3g networks: Supporting
mobility with multipath tcp,” UMass Amherst Technical Report: UM-
CS-2012-022.

[7] ——, “A measurement-based study of multipath tcp performance over
wireless networks,” ser. IMC ’13.

[8] M. Smith, “Sony shows (and tells) us why 4K on a phone isn’t crazy,”
http://goo.gl/lxYJZA.

[9] Wi-Fi Alliance Technical Committe P2P Task Group, Wi-Fi Peer-to-Peer
(P2P) Technical Specification, Version. 1.2, 2010.

[10] W. Hu and G. Cao, “Quality-aware traffic offloading in wireless net-
works,” ser. MobiHoc ’14.

[11] L. Keller and et al., “Microcast: Cooperative video streaming on
smartphones,” ser. MobiSys ’12.

[12] A. Ford and et al., “TCP Extensions for Multipath Operation with
Multiple Addresses,” Internet Requests for Comments, RFC 6824,
January 2013. [Online]. Available: https://tools.ietf.org/html/rfc6824

[13] Y. Lim and et al., “Improving energy efficiency of MPTCP for mobile
devices,” CoRR.

[14] R. Stewart, “Stream control transmission protocol,” Internet Requests
for Comments, RFC 4960, September 2007. [Online]. Available:
http://tools.ietf.org/html/rfc4960

[15] Z. Shen and et al., “Overview of 3gpp lte-advanced carrier aggregation
for 4g wireless communications,” IEEE Communications, 2012.

[16] S. Jakubczak and et al., “Link-alike: Using wireless to share network
resources in a neighborhood,” AMC MC2R, 2009.

[17] Sascha Segan, “Fastest Mobile Networks 2015,” http://www.pcmag.com/
article2/0,2817,2485837,00.asp.

[18] S. Guigui, “Spydroid-ipcamera,” https://goo.gl/2iQiqX.
[19] K. Lee, S. Hong, S. J. Kim, I. Rhee, and S. Chong, “Slaw: A new

mobility model for human walks,” in INFOCOM 2009, IEEE, April
2009, pp. 855–863.

