
Scheduling Virtual WiFi Interfaces for High Bandwidth Video
Upstreaming Using Multipath TCP

Shobhi Maheshwari

University of Utah

shobhim@cs.utah.edu

Philip Lundrigan

University of Utah

philipbl@cs.utah.edu

Sneha Kumar Kasera

University of Utah

kasera@cs.utah.edu

ABSTRACT
Live video upstreaming refers to the flow of live data in the upstream

direction from mobile devices to other entities across the Internet

and has found use in many modern applications such as remote

driving, the recent social media trend of live video broadcasting

alongwith the traditional applications of video calling/conferencing.

Combined with the high definition video capturing capabilities of

modern mobile devices, live video upstreaming is creating more

upstream data traffic then what present day cellular networks are

equipped to support, often resulting in sub-optimal video expe-

rience, especially in remote or crowded areas with low cellular

connectivity and no WiFi.

We propose that instead of using its single cellular connection, a

mobile device connects to multiple nearby mobile devices and splits

the live video data over the cellular bandwidth of these devices using

Multipath TCP protocol. The use of MPTCP, for upstreaming live

video data, has largely remained unexplored especially for scenarios

where WiFi connectivity is not available. We use wireless interface

virtualization, offered by Linux, to enable Multipath TCP to scale

and connect to a large number of cellular devices. We design and

build a system that is able to assess the instantaneous bandwidth

of all the connected cellular devices/hotspots and uses the set of

the most capable cellular devices for splitting and forwarding the

live video data. We test our system in various settings and our

experiments show that our system greatly increases the bandwidth

and reliability of TCP connections in most cases and in cases where

there is a significant difference in the throughput across cellular

hotspots, our solution is able to recognize and isolate the better

performing cellular hotspots to provide a stable throughput.

KEYWORDS
MPTCP, Virtual Wireless Interfaces, Access Points, Cellular De-

vices/Hotspots

1 INTRODUCTION
Cellular networks have traditionally been optimized to deliver con-

tent to mobile devices as much of the data flows in the downstream

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICDCN ’19, January 4–7, 2019, Bangalore, India
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6094-4/19/01. . . $15.00

https://doi.org/10.1145/3288599.3288620

direction. However, the introduction of smartphones with high-

resolution cameras has increased the demand for high-quality video

content not only in downstream direction but in the upstream

direction as well. Recently, live video upstreaming has found an

application in Autonomous Vehicles where a person can control

a vehicle remotely to guide it through situations that the vehicle

is not equipped to handle [2]. This idea often termed as “Remote

Driving” uses wireless connections to transmit the video data to

the remote operator and is being employed by several companies

to make the transition from human-driven to autonomous vehicles

[1].

Another application of live video upstreaming is the recent social

media trend of broadcasting user-generated content from mobile

devices. Viewers can connect and watch the video in real-time, all

the while interacting with the broadcaster in the form of comments

or likes. Facebook Live is currently one of the biggest live video

broadcasting services in the world, along with Periscope by Twitter

and Youtube Live. Yet another example of a live video upstreaming

platform is Twitch used by video gaming enthusiasts who enjoy live-

broadcasting their games and watching other users play, compete,

teach and participate in all gamers’ activities.

Even though high bandwidth WiFi links are capable of upstream-

ing live video data at a high quality, they fail in amoremobile/outdoor

environment. Even with various deployments, by several indepen-

dent parties covering central areas of a city [10], WiFi is often lim-

ited to urban areas and is not so widely available. On the other hand

cellular networks, by their very nature, provide wide-range cover-

age and opportunity for user mobility. Cellular base stations have a

wide coverage area and therefore, have the ability to make the live

video upstreaming experience truly mobile. However, cellular links

are not always adequate to support video transmission because of

varied reasons. First, the asymmetric nature of cellular networks

places more focus on downloading content, rather than uploading.

Second, the data rate of a cellular connection often varies dramati-

cally [8] over time based on spatiotemporal variations in cellular

channel conditions. Furthermore, cellular blackspots/notspots, gen-

erally defined as geographic areas that experience reduced network

coverage due to physical obstructions including hills, trees, and

buildings [6], can affect a particular cellular connection’s data rate

solely because of cell tower placement. Third, every year mobile

devices are equipped with increasingly advanced cameras capable

of recording high-definition videos which require higher cellular

data rate.

WiFi, due to its high bandwidth, is capable of upstreaming high-

definition videos but cannot provide true mobility. Cellular net-

works provide true mobility but fall short of upstreaming high-

quality videos. To improve the mobility experience and still be able

to achieve the high bandwidth attained by WiFi, several solutions

https://doi.org/10.1145/3288599.3288620

have been proposed that can aggregate bandwidth by offloading
data to nearby mobile nodes [4, 14] but these solutions do not ad-

dress the challenges of upstreaming live video data especially using

the Multipath TCP protocol. In this work, we address the problem

of bandwidth aggregation for high-quality video upstreaming using

the Multipath TCP protocol. We assume that a client (a user broad-

casting a live video) is in a social environment, i.e., surrounded by

people that he/she is acquainted with and can request them to share

their cellular bandwidths. A client could also use socially unknown

nearby devices as long as appropriate incentive mechanisms can

be incorporated [19].

Multipath TCP (MPTCP) [8, 12, 22–24] is a major modification

to TCP that allows multiple paths, known as subflows, to be used

“simultaneously” by a single transport connection. Figure 1 shows

an MPTCP connection between MPTCP-enabled client and server

with 3 different subflows. An MPTCP subflow is identified by a

combination of client-server IP addresses and port numbers, similar

to standard TCP, and associated with a network interface connected

to an access point, Cellular Hotspots (CD) in our case
1
. Essentially,

MPTCP is limited to the number of physical interfaces a device can

support. For example, a standard laptop has two network interfaces:

one WiFi and one Ethernet interface; smartphones often have a

WiFi interface and a cellular interface. Most studies associated

with MPTCP have explored its utility with just two interfaces. One

possible solution is interface emulation and in a recent work, Lim et

al. [18] use MPTCP in a simulation framework for stored video and

file transfer applications. However, to the best of our knowledge,

the use of MPTCP for live video upstreaming has largely remained

unexplored. In our work, we overcome the restrictions posed on

the Multipath TCP protocol, by the number of wireless interfaces

available on a mobile device, by virtualizing the wireless interface

and scheduling these virtual interfaces in a time-shared weighted

round-robin fashion to transmit data that gives more weight to the

interface that is able to sendmore data or, in other words, has higher

throughput as compared to interfaces with lower throughput.

Figure 1: An MPTCP connection going through 3 different
Access Points.

1
For the rest of this paper, we will use subflow and interface interchangeably.

Another problem with the use of Multipath TCP for live video

transmission is the variable throughput between the devices. The

cellular bandwidth of individual neighboring devices can be dif-

ferent because of reasons such as distance from the base station,

different carriers, etc. Although the creation of virtual interfaces

provides a solution to the limited number of wireless interfaces on

a device, it can not address the problem of variable throughput.

Essentially, when the difference between the throughput of two

subflows is large, a large number of packets arrive out-of-order

at the receiver [20]. MPTCP holds these out-of-order packets in a

reordering queue at the receiving end until all the data sequence

numbers are in order and therefore, a delayed packet can block

all the packets with higher data sequence number that arrived

before it. This problem is even more prevalent in the upstream

direction because of lower upload speeds provided by the cellular

networks and other shortcomings of cellular networks stated above.

Therefore, in such scenarios, a better solution would be to drop the

poor performing subflow. However, the complexity of the task of

selecting the subflows to drop increases as the number of subflows

associated with a particular transmission increase.

To complement the scalability provided by wireless interface vir-

tualization, we design an intelligent system that adds or drops sub-

flows based on their ability to contribute to the aggregate through-

put. Our system maintains a global view (aggregate throughput) of

all the associated subflows to understand how a particular subflow

would perform in conjunction with other subflows and drops the

subflows that could prove to be a possible bottleneck. It transmits

data over every single subflow in a weighted round-robin fashion

and at the end of the transmission slot for a particular subflow, the

throughput achieved by it is measured and based on the compari-

son of the current throughput as well as the global throughput, the

decision of dropping or keeping the current subflow is made.

We evaluate our system in three ways. First, we test our imple-

mentation under stable conditions in a lab with stationary cellular

hotspots. Second, we set up our system in an outdoor environment

and the cellular hotspots are allowed to roam free, moving in and

out-of-range of the broadcasting client. Third, we deploy our sys-

tem on a high-speed commuter train. Our experiments show that,

in general, our system is able to aggregate the video throughput,

depending on the number of cellular hotspots and their individual

throughput. Our system is also able to account for delay variability

between individual subflows and how that affects their respective

bandwidths. Our system is able to isolate and drop low performing

subflows but probes them periodically to check for any changes in

the connectivity.

In summary, we make the following contributions in this paper:

• Design an intelligent system that works by dropping/adding

subflows for increasing the aggregate upstream bandwidth

for live video data.

• Incorporate a feedback loop that provides a server-side view

of the throughput to the client, to help the client make an

informed decision about which subflows to transmit on.

• Implement our globally aware dynamically adjusted algo-

rithm in the Linux kernel. Also, implement a selection algo-

rithm that dynamically selects an efficient subflow to initiate

the MPTCP connection.

• And lastly, evaluate our design/implementation under dif-

ferent network conditions to test it for robustness and scala-

bility.

2 RELATEDWORK AND BACKGROUND
A promising and low-cost solution to the exponential increase in

cellular data traffic download is to utilize nearby mobile devices or

WiFi access points to offload cellular data [15]. MicroCast [17] is

a system that uses a group of mobile users, in close proximity of

each other, to cooperatively download a video. However, MicroCast

does not deal with live video data. Also, as noted above, MicroCast

works with downstream data whereas our system deals with the

less researched problem of data upstreaming. Quality Aware Traffic

Offloading (QATO) [15] enables a user with a poor cellular connec-

tion to offload its data, with the help of a base station, to another

nearby user with a better cellular connection for helping to transfer

the data to the internet. QATO suggests the use of Wi-Fi Direct

for transmission of data from the source node to the neighboring

node. Although QATO deals with uploading data, it only uses a

single mobile node from its neighbors to offload data. Also, QATO

works with stored data, such as pictures and text files, for upload-

ing and does not consider live video data. [11, 25] also deal with

cellular offloading using nearby devices but work primarily with

video streaming/downloading.

Similar to our system, mobiLivUp [19] utilizes nearby smart-

phones and their cellular bandwidth to effectively increase the

live video upstream bandwidth. mobiLivUp works by creating a

small wireless network, using WiFi Direct that nearby devices can

then connect to. The video stream is split into multiple different

streams and then sent to these connected devices to be uploaded

to the server through the devices’ network connection. However,

mobiLivUp requires an application layer splitter and gatherer for

handling the multiple data streams which can limit its capability

to work with unmodified video broadcasting systems. Instead, our

system takes all the “splitting” and “gathering” complexity out of

the application layer into the operating system and together with

MPTCP, it is compatible with any application the user might prefer.

Stream Control Transmission Protocol (SCTP) [21] can be used

for transmitting multiple streams of data in parallel between two

end points that have an established network connection. However,

SCTP does not have the capability to scale to more than one wireless

interfaces and is not necessarily optimized for live video data. In

contrast to SCTP, Multipath TCP [12] works with multiple streams

of data and has a built-in ability to scale to a large number of

wireless interfaces.

2.1 Multipath TCP
Multipath TCP, as proposed by the IETF working group mptcp
[12], is an effort towards extending the functionality of standard

TCP by spreading a single data stream across different interfaces

(e.g., WiFi and LTE on a smartphone). Multipath TCP can utilize

the throughput achievable over every available interface thereby

increasing the aggregate throughput for the application. Multipath

TCP appears as a regular stream-socket interface to the application,

however below the application layer, TCP subflows are created for

each interface. The multiple subflows going through the different

interfaces in combination form a Multipath TCP connection and

use TCP options for signaling the necessary control information

between the end hosts. Since every subflow is similar to a standard

TCP connection between two endpoints, Multipath TCP appears

to be a regular TCP connection to the firewalls/middleboxes along

the subflows’ paths. Thus, Multipath TCP works with unmodified

applications and is deployable in today’s Internet [24].

The benefits of using multiple paths to transmit data include bet-

ter resource utilization, better throughput, increased redundancy

and smoother reaction to failures as the connection can still persist

through other paths when a path fails. MPTCP also has benefits of

load balancing for multihomed servers and data centers, and for mo-

bility [29]. Many industry leaders such as Apple and Samsung have

already adopted this protocol in their latest iOS and Android sys-

tems. The iOS operating system now uses MPTCP to optimize the

delay-sensitive traffic generated by Siri, Apple’s Personal Assistant

[3].

2.2 Wireless Network Interface Virtualization
Wireless Network Interface Virtualization is a concept that involves

establishing and maintaining concurrent Access Point (AP) con-

nections for better robustness and throughput. Spider [26, 27] is a
system that uses multi-AP selection, channel-based scheduling, and

opportunistic scanning to maximize throughput while mitigating

the overhead of association and DHCP. WiSwitcher [13] virtualizes
the wireless driver sitting on top of the single radio card, such that

it appears as independent Virtual Stations associated with their

respective Access Points. The ViFi project [5] exploits the use of

multiple APs to improve the link layer performance for common

applications such as Web browsing and VoIP, for moving vehicles.

MultiNet [7], FatVAP [16], and PERM [28] are some more exam-

ples of systems that enable clients to associate with more than one

nearby Base Station (BS), to increase throughput if the wireless

capacity is greater than the capacity of wired links behind the BSes.

Thus, the idea of Wireless Network Interface Virtualization and

associating to multiple APs for bandwidth aggregation is not new

and has been studied quite extensively but what is missing is the

ability of an unmodified application to benefit from this bandwidth

aggregation, as standard TCP is designed to work with a single

interface by default. Multipath TCP enables unmodified applica-

tions to use these interfaces. Niculescu et al. [10] make some efforts

towards making unmodified applications Multipath capable. Their

system name MultiWiFi leverages Multipath TCP to achieve seam-

less mobility in WiFi, by letting a client connect to multiple APs

on the same channel and splitting the traffic between them using

Multipath TCP, thereby enabling a WiFi client to achieve close to

the maximum achievable throughput in a wide range of scenarios.

However, Multi-WiFi has been designed mainly for downstreaming

content and is not optimized for live video data. For this reason,

MultiWiFi is ill-equipped to handle the challenges faced with mov-

ing video data traffic from the client to the server. We design a

system that lets applications use Multipath TCP without any modi-

fication to the application with emphasis on live video transmission

which is not tolerant of delays.

3 METHODOLOGY
In this section, we present our approach to efficiently aggregate the

upstream bandwidth of multiple nearby devices for live videos. We

design our system incrementally with the help of two algorithms:

Algorithm 1 that utilizes client-side information, including round-

trip time and buffer sizes, to calculate subflow throughput, and

Algorithm 2 that builds on top of Algorithm 1 and introduces a

feedback loop that conveys the number of bytes received at the

server-side back to the client. This helps the client account for

delays caused in the network and calculate server-side throughput

more accurately.

MPTCP works by establishing an initial connection over a single

interface and starting data transmission over this initial subflow.

It then adds subflows using the MP_JOIN option. MPTCP adds

subflows one at a time and sends as many packets with MP_JOIN

option as there are interfaces available on an end-device. In Figure

2, the live broadcasting device has two virtual interfaces, so the

MPTCP connection would be established over one of them and then

the next subflow would be added later. In our system, we use the

MPTCP fullmesh path manager, which means that MPTCP would

create subflows equal to the product of the number of interfaces

present on both sides. In Figure 2, the client/live broadcasting device

has 2 virtual interfaces and the video server has a single interface.

So, the fullmesh path manager would create 2 ∗ 1 subflows.

Figure 2:MPTCP connectionwhen two virtual interfaces are
present on the client-side.

A physical wireless card is capable of supporting hundreds of

Mbps data rate but the actual data rate for any data transmission is

determined by the rates that the network can support. More specifi-

cally, the data transmission rate is decided by the slowest/bottleneck

link inside the network. So, virtualizing a physical wireless card

into multiple interfaces does not necessarily affect its capability

to transmit data but enables us to transmit more data by splitting

the data over multiple interfaces. Therefore, Multipath TCP can be

used in conjunction with virtual interfaces to establish multiple

subflows between the client and the server. However, when the

virtual interfaces are connected to different cellular hotspots they

get different throughput. Let us consider the example of an MPTCP

connection with two subflows, where Sub f low1 has a much higher

throughput than Sub f low2, i.e., packets sent over Sub f low1 would

arrive earlier than packets sent over Sub f low2. MPTCP scheduler is

designed such that it would push more data towards Sub f low1 and

only a small amount of data would be sent over Sub f low2. Since,

Sub f low2 has poor throughput, the packets sent over Sub f low2

would take much longer than packets sent over Sub f low1. MPTCP,

like TCP, ensures that packets are passed to the upper application

layer in the correct order. So, while the packets sent over Sub f low2

are in-flight, i.e., are traveling in the network, the packets sent

over Sub f low1 with higher sequence numbers would be held in the

reordering buffer. Also, while the server is waiting for the packets

sent over Sub f low2 it would continue to ask the client for those

packets, causing the client to move to the fast retransmission state.

The high mismatch in the throughput across two subflows thus

results in an aggregate throughout that can be much lower than

what we could achieve by using only Sub f low1. Therefore, in our

system, we aim at increasing the aggregate bandwidth by drop-

ping subflows that can result in an increase in the number of the

out-of-order packets.
Furthermore, in the network, every MPTCP subflow is treated

as an individual TCP flow. Therefore, to maintain the backward

compatibility of MPTCP with TCP (if one of the end hosts does not

support MPTCP, then the connection should fall back to regular

TCP) every subflow has an associated sending/receiving buffer and

the end hosts maintain data structures containing metadata about

the subflow, similar to the metadata maintained for a standard TCP

connection. We leverage this information to obtain a server-side

view of all the MPTCP subflows for more accurate throughput

calculations at the client-side.

In this section, we first propose a base algorithm that uses the

round trip time, rtt, and buffer length maintained at the client-side

(i.e., the user broadcasting live video) to estimate the throughput at

the server-side (video server in the cloud where the live video is

being uploaded). However, the throughput estimated at the client

can differ completely from what the receiver sees because of the

delays introduced inside the network and out of order packets.

Therefore, in our final algorithm, we introduce a feedback loop to

bridge the gap between the client’s and the server’s views.

3.1 Algorithm 1: Client-Side Throughput
Calculation

An MPTCP connection maintains information about the packet

round-trip times and the transmission buffer length at the sender-

side (client-side, in our case) for every subflow. Therefore, the

throughput calculations are often done on the sender-side. We

use these calculations in our first approach.

The selection of subflows can be done in two ways. First, we can

measure the throughput for the interfaces in advance, before start-

ing the transmission and then add subflows based on the throughput

using MP_JOIN. Second, we can start the transmission with sub-

flows equal to the number of active interfaces we have and then

drop the subflows that prove to be a bottleneck later. The first

approach works well in the scenarios where we have only two

interfaces, as in that case, we can just select one interface if the

difference between the throughput is large. However, this approach

does not scale well and the complexity of selecting the interfaces

to start the connection with increases as the number of active in-

terfaces increase. Also, in our scenario, the cellular hotspots are

mobile in nature and are at liberty to move in and out-of-range

of the broadcasting client. In such a dynamic environment, select-

ing a set of ‘good’ interfaces for transmission can prove to be a

challenging task. A wrong selection can result in less than optimal

throughput. Lastly, because of the mobile nature of the cellular

hotspots, a poor performing subflow can recover later with time.

Therefore, we decide to make a bottleneck subflow a backup flow

instead of completely dropping it, as explained in Section 3.2.

Figure 3: Scenario 1 (left) : The client connected to CD1 and
CD2 would pushmore data towardsCD2 because of its better
channel condition. Scenario 2 (right) :CD1 moves away from
the client and the client moves all the traffic to CD2 while
keeping CD1 as a backup.

We begin with the assumption that every subflow is a good

flow, i.e., it can increase the aggregate throughput of the entire

connection. By making this assumption, we are giving each subflow

a fair chance for consideration. Basically, each subflow is initially

scheduled to transmit some data, which in turn helps to better

evaluate its performance. Consider the two scenarios in Figure 3.

Even thoughCD2 is clearly the better choice thanCD1 because of its

better channel conditions, the client still chooses to transmit some

data over CD1 but as CD1 moves away from the client, the client

makes the decision of dropping theCD1 subflow. For every subflow,

we measure the throughput of the subflow based on the buffer

length or maximum segment size (mss) and the round trip time, rtt.
At the same time, we also keep track of the global throughput, i.e.,

the throughput achieved over all the subflows. If the throughput

for the subflow threshold is less than a certain fraction of the global

average we drop that subflow so that it is not be scheduled the next

time its turn comes up.

Initially, the client mobile device starts transmitting the live

stream using MPTCP over the first subflow and MPTCP adds sub-

flows without any interference from our system. The system sched-

ules interfaces from a queue, i.e., brings them on-channel and a

particular interface stays on-channel as long as the subflow buffer

has data to transmit. Once the buffer is emptied, the interface is

taken off-channel and a null frame is sent to the CD, to inform the

CD that the interface has entered power save mode (PSM) and to

buffer any packets for the client. When this same interface comes

back on-channel again, it will inform the CD and the CDwill deliver

all the buffered packets to the interface.

Before an interface goes off-channel, we sample its throughput

and compare it to the global throughput of the MPTCP connection.

If the throughput associated with a particular CDi is less than a

certain fraction of the global throughput,

BCDi < αBдbl (1)

where α is the throughput threshold, then the interface is marked

inactive, moved to the probe_list and the probe_timer is set. When

the probe_timer expires all the interfaces from the probe_list are
moved to the active_list and their performance is evaluated once

again.

Algorithm 1 BaseApproach

1: sr t t ← 0 ▷ Smoothed RTT calculated over time

2:

3: procedure CalculateThroughput(r t t,mss) ▷ Instantaneous RTT

4: B← 0

5: β ← 0.125
6: if srtt! = 0 then
7: srtt = (1 − β) ∗ srtt + β ∗ (r t t)
8: else
9: srtt = rtt ∗ 8

10: B = mss/srtt

11: return B

12:

13: procedure CDSwitch()

14: Bдbl ← 0

15: β ← 0.125
16: for CDi in CD_list do
17: Bi ← CalculateThroughput(r t t,mss)
18: if Bi < α ∗ Bдbl then
19: // Mark CDi as backup
20: if probe_timer is not set then
21: // set probe_timer
22: if probe_timer == 0 then ▷ probe_timer expired
23: for CDi in CD_list do
24: if CDi is backup then
25: // Mark CDi as active
26: Bдbl = (1 − β) ∗ Bдbl + β ∗ Bi ▷ EWMA calculation

27: return

In Section 4.1, we evaluate this algorithm under different sce-

narios to determine the optimal value of α , the throughput thresh-
old used in the procedure CDSwitch. The use of exponentially

weighted moving average (EWMA) for the calculation of the global

throughput ensures that as the algorithm circles through the list of

interfaces, the influence of old samples falls exponentially as new

samples are added to the average. Another thing to note here is that

even when a particular interface performs poorly during its turn,

we still add its throughput to the global average. This is quite useful

in scenarios where, for instance, if the client moves away from

the set of CDs it is connected to. In this case, the global average

throughput would go down as the next interfaces are scheduled

but the algorithm would still be able to adapt to the worse but new

network conditions.

3.2 Rationale Behind probe_lists
Since every device involved is mobile (the client requesting the

connection and the device acting as the access point are all cellular

devices), it may happen that a particular CD moves out-of-range,

i.e., away from the client device (such that its throughput is less

than the average throughput) but it may also move back in-range

sometime in the future. So, while trying to increase our aggregate

throughput, if we disconnect when a device moves out-of-range

and try to reconnect when it comes back in range, we might end

up wasting a significant amount of time (up to 15 seconds [9]

because of the DHCP and the WEP/WPA key exchanges involved)

in connecting to a CD. Since re-associating with a particular CD

can have such high-performance penalties, in practice, we move

the interface associated with that particular CD to the “probe_lists”
and check for any changes in the bandwidth of the members of the

list periodically. If the bandwidth increases then we can avoid all

the hassle of a new association and save the time we would have

otherwise wasted in trying to reconnect to the CD.

Also, in a truly mobile scenario, there is no accurate way of

predicting the throughput the client will obtain from a CD in the

very near future and establishing a new connection every time is a

decision that locks the device to one CD for a certain period of time

resulting in sub-optimal performance. Therefore, it makes sense to

stick with a choice for some amount of time, in case the CD may be

facing some temporary short-term fluctuations that are affecting

its capacity.

3.3 Algorithm 2: Globally Aware Dynamically
Adjusted

The Internet is a best-effort network, meaning that the packets

will be delivered if possible, but may also be dropped. Therefore,

our first approach with client-side throughput calculations, may

work well in theory but in practice, these dropped packets have to

be retransmitted by MPTCP and this retransmission reduces the

throughput on the server-side for two reasons:

• The lost data needs to be sent again, which consumes time.

The delay introduced by this retransmission is inversely

proportional to the rate of the bottleneck link, i.e., the slowest

link in the network between the sender and the receiver.

• The MPTCP protocol uses acknowledgments as a means of

feedback about what packets were delivered. Detection of un-

delivered packets relies heavily on these acknowledgments.

Due to propagation delays, acknowledgments can only be

received by the sender with some latency, which further

impacts transmission. In most practical scenarios, this is the

most significant contribution to the extra delay caused by

the retransmission.

So, for the precise calculation of the throughput, these factors

need to be taken into consideration. The MPTCP rate is regulated

by its congestion window size, slow-start duration, sender window

(and receiver window) size. A suboptimal configuration of these

variables will make the subflow throughput measured a bit lower.

More importantly, especially in wireless channels, the channel con-

dition changes also lead to adaptation of MPTCP congestion and

flow controls. Such adaptation can also lead to the throughput being

calculated differently than the actual value. All these conditions

would lead to the sender and the receiver seeing two completely

different sets of throughput and delay. The throughput calcula-

tion at the sender-side, while giving a pretty good estimate of the

receiver-side throughput, does not reflect the exact throughput that

the receiver perceives.

The receiver has a more accurate global understanding of all the

subflows whereas the sender is responsible for managing the inter-

faces. To bridge this gap between the sender and the receiver we

introduce a feedback loop from the receiver to the sender. The feed-

back can now be used in two ways to improve our base algorithm,

which we describe next.

3.3.1 Approach 1: Globally Aware Subflow Selection. As
discussed above, the things that affect the throughput of a particular

subflow are mss, rtt, congestion window, retransmission rate (loss

rate) and other network delays. The client-side calculates the rtt
but the server has a better understanding of how many bytes are

received on which subflow. So, the server sends this information to

the client as feedback. This information is embedded in the TCP

acknowledgment headers’ options field which can then be read by

the client when the acknowledgment is received. MPTCP packets

are similar to TCP packets in the sense that an MPTCP packet

would have the same TCP header as a regular TCP packet but with

the MPTCP control information in the TCP options field.

The objective of this algorithm is also to optimize the value

of α , the throughput threshold, in the procedure CDSwitch, in

algorithm 1.

3.3.2 Approach 2: Subflow Selection based on Adaptive
Throughput Threshold. The disadvantage of using a fixed thresh-
old is that it will treat every connection similarly, whereas it can

happen that a certain threshold while being perfectly reasonable for

a particular transmission may be too high for another transmission

and can lead to loss of throughput or it may be too low for yet

another transmission and slow down the whole connection. So, the

challenge of which subflow is a poor-performing subflow and how

many such subflows exists remains.

0 5 10 15 20 25 30
Time (Seconds)

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

Th
ro
ug

hp
ut
 T
hr
es

ho
ld
 (%

)

Figure 4: The throughput threshold decreases step by step
every time a AP contributes to the global throughput but it
increases based on the mean of the αcurr and αmax

To mitigate this problem, we follow an approach to dynamically

adjusted α . We start with a high value of α and decrease the value

of α every time Bдbl increases or remains the same. However, when

we see a decrease in the Bдbl , we set the value of α to the mid-point

of the current value of α and the initial value of α . Algorithm 2 gives

a pseudo-implementation of our dynamically adjusted approach.

Setting the value of α as the mean of its current value and its max

value ensures that α never exceeds αmax . Figure 4 illustrates the

variation of α corresponding to one of the experiments explained

in section 4.3.

Algorithm 2 Globally Aware Dynamically Adjusted Approach

1: procedure CDSwitch()

2: Bдbl ← 0

3: β ← 0.125
4: αmax ← 0.20
5: α ← αmax
6:

7: for CDi in CD_list do
8: Bi ← CalculateThroughput(r t t, bytes_r eceived)
9: Biexp ← CalculateThroughput(r t t,mss)
10: if Biexp < Bi & Bi >= α ∗ Bдbl then
11: α − = 1

12: else if Biexp > Bi & Bi >= α ∗ Bдbl then
13: //Do Nothing
14: else
15: α = (α + αmax)/2
16: // Mark CDi as backup
17: if probe_timer is not set then
18: // set probe_timer
19:

20: Bдbl = (1 − β) ∗ Bдbl + β ∗ Bi ▷ EWMA calculation

21: // Switch to the next active interface
22:

23: if probe_timer == 0 then ▷ probe_timer expired
24: for CDi in CD_list do
25: if CDi is backup then
26: // Mark CDi as active
27: return

3.4 Initial Sub-flow Selection
When multiple interfaces are available, the Linux operating system

selects a particular interface as the primary interface. The problem

with a static primary interface arises when the primary interface

is connected to a bad CD or a CD that is too far away. If the path

through the primary interface is congested or the rtt through it

is quite high then MPTCP makes a few attempts to establish the

connection but ultimately gives up and returns a failure.

In this case, the MPTCP connection can never be established as

the first MPTCP subflow is created over the primary interface. To

solve this problem, we have implemented a simple algorithm that

can dynamically scan all the interfaces and establishes the MPTCP

connection over the first working interface. To find a working

interface, the algorithm cycles through the list of interfaces starting

with the primary interface and sends a few echo request messages to

the receiver over every interface. The first interface it gets an echo
response on would be used for connection establishment. While

scanning through the list of interfaces, the algorithm looks for

the first working interface rather than the best interface because

MPTCP would ultimately create subflows through all the interfaces

and we don’t need to waste our efforts trying to find the best

interface.

4 EVALUATION
We have implemented our globally aware dynamically adjusted

algorithm in the Linux 3.14.0 kernel, patched with MPTCP v0.89.

Most of the changes are made to the 802.11 module of the Linux

kernel with Atheros 9K NIC card as the wireless card, although the

changes are not dependent on any NIC card.

In this section, we evaluate each of our contributions experimen-

tally, in an indoor as well as an outdoor environment to account

for different network conditions and test our system for scalabil-

ity and robustness. First, we evaluate our system with different

throughputs and delays to find an optimal value for the throughput

threshold. Next, we run tests with throughputs above and below

the throughput threshold, to analyze how our system handles the

poor performing subflow. Then, we run experiments to test our

system in a comparatively stable indoor and outdoor environments.

Finally, we run our system with two different cellular links in a

real-world live video transmission in a commuter train to test its

performance in a real-world scenario.

4.1 Calculating Throughput Threshold
In this section, we run tests with different throughputs and delays,

to figure out an optimal value of the throughput threshold, so that

our system is able to differentiate between a subflow that would

contribute to the aggregate throughput compared to a bottleneck

subflow. To create unbalanced network conditions, we use linux
traffic control (tc) utility to control the egress throughput

(upload throughput) over a single subflow while letting the other

subflow be uncontrolled. During our experiments, we are connected

to the on-campus WiFi on both the subflow, which can support

upload speeds up to 14 Mbps. We also performed these experiments

while connected to two different cellular devices (CDs), to account

for the real use case of our problem statement.

Our implementation compares the throughput of a particular

interface with the global average just before switching to the next

CD. Switching from one CD to the other requires transmitting

a null IEEE 802.11 frame to the CD with the power-save mode

(PSM) bit set, indicating that the client is entering PSM mode. This

tells the CD to buffer any packets destined for the client. Then the

algorithm updates the SSID and MAC address of the other CD along

with encryption parameters if they have changed. If the CDs are

on different channels, the device driver is also set to the channel

frequency of the next CD. After this, the device is ready to transmit

through the second CD.

We evaluated our algorithm by creating two virtual interfaces

and connecting to two different access point through them. For

interface 1, we were connected to our campus WiFi and were able

to receive a pretty stable upload throughput of almost 14 Mbps but

for interface 2, we connected to a cellular device and limited the

upload bandwidth to 75%, 50%, 30%, 20%, 15% and 10% of the maxi-

mum throughput on the interface 1. By emulating such unbalanced

rate conditions, we want to emulate situations where one CD is

providing consistently good performance whereas the performance

of the other CD goes down with time. Our analysis shows that the

number of out-of-order packets increases as the difference between

the throughputs of the two subflows increase. For the purpose of

this analysis, we used data files with size ranging from 100 KB to

100 MB. Table 1 summarizes some of the results for this experiment.

MPTCP comes with a smart built-in scheduler that pushes data

to the subflow with the shortest rtt until its send buffer is full but

Subflow 1

(Mbps)

Subflow 2

(Mbps)

Aggregate

Throughput

(Mbps)

13.86 1.94 12.05

12.1 1.63 10.63

14.52 2.08 13.23

Table 1: When one subflow is less than 20% capacity of the
other subflow, aggregate throughput decreases.

Subflow 1

(Mbps)

Subflow 2

(Mbps)

Aggregate

Throughput

(Mbps)

4.13 2.05 6.05

3.98 2.57 6.39

4.23 1.97 6.19

Table 2: When the difference between between the through-
put of two subflows is not that large, throughput aggrega-
tion is achieved.

MPTCP does not take into account the effect of out-of-order packets

when the difference between the throughput of the subflows is

large and therefore would still end up sending some data over the

bottleneck subflow. The delay introduced by out-of-order packets

may not be significant when the video duration is small, say a

couple of seconds. But with the increase in video duration, this

delay affects the overall throughput achieved at the receiver end.

Next, we run the same experiments while being connected to

two different CDs through our virtual interfaces. In this case, the

highest upload throughput that we were able to achieve on a single

interface was around 5 Mbps and we limited the upload bandwidth

of the interface 2 to 75%, 50%, 30%, 20%, 15% and 10% of interface 1.

We used the same data files for this experiment as well. A summary

of these experiments can be found in Table 2.

From thewide range of experiments that we performed, we found

that a throughput threshold of 0.2 (20%) works best to differentiate

good interfaces from the bad ones.

4.2 Base Algorithm vs Base Implementation
After finding the optimal value for the throughput threshold, we

plugged this value of α in algorithm 1 and evaluated system perfor-

mance. To demonstrate the function of our base algorithm, we ran

experiments under following conditions: we created two virtual

interfaces with one connected to on-campus WiFi access point with

upload throughput around 14 Mbps and connected the second inter-

face to a CD that had a variable upload throughput ranging from 4

Mbps to 1.6 Mbps. We ran the experiments for extended periods of

time to account for a large amount of data being uploaded during a

live video transmission that may last up to tens of minutes or more.

Figure 5 shows that our system is able to combine the throughput

of the two subflows and able to achieve more than 95% of the sum

of the individual flows.

0 25 50 75 100 125 150 175
Time (seconds)

0

2

4

6

8

10

12

14

Th
ro
ug

hp
ut
 (M

bp
s)

CD1
CD2
MPTCP

Figure 5: MPTCP combines throughput when both subflows
are performing well.

0 5 10 15 20 25
Time (seconds)

0

2

4

6

8

10

12

14

Th
ro
ug

hp
ut
 (M

bp
s)

CD1
CD2
MPTCP

Figure 6: MPTCP througput goes down when one of the sub-
flows is not performing well.

Next, we test the baseline system under unbalanced network

conditions where on one interface we are connected to a high-

speed WiFi but for the other, we are connected to a congested

cellular network. Figure 6 shows how the MPTCP performance

went down as the performance of the better interface went up. We

next ran our system under similar conditions and, as shown in

Figure 7, our system successfully recognized the bad interface and

stop transmitting on it. Since, we periodically probe the backup

interfaces for improvements, in Figure 7, the second interface again

comes online at about 17 secs but is again shut down for its low

performance.

0 5 10 15 20 25 30
Time (seconds)

0

2

4

6

8

10

Th
ro
ug

hp
ut
 (M

bp
s)

CD1
CD2
Algorithm

Figure 7: The system pushes all the data towards CD2 and
puts CD1 on backup.

We perform the same experiments while being connected to two

different cellular hotspots and obtained similar results as shown

in Figure 6. Our base algorithm was successfully able to recognize

and isolate low performing subflows to maintain the throughput of

the better performing subflows.

4.3 Feedback loop vs Base algorithm
In this section, we test our implementation that introduces the

feedback loop into our algorithm to see how it performs under dif-

ferent network conditions. Along with incorporating the feedback

in our throughput calculations, we adjust our throughput threshold

based on the feedback we receive from the server. We decrement

the throughput threshold every time the received feedback indi-

cates that the server-side throughput has increased or has at least

remained the same but if the feedback indicates that the server-side

throughput has decreased because of a particular subflow, we block

that interface and increment our throughput threshold to account

for the feedback.

We first test our systems in an indoor setting with two virtual

interfaces connected to two cellular CDs. The testing conditions in

the indoor environment were stable but we still saw an improve-

ment over our base algorithm. We then perform the experiments in

an outdoor environment, with stationary as well as mobile cellular

CDs. These experiments performed similar to the indoor environ-

ment and were also able to select subflows in order to maximize

the throughput achieved. As can be seen in Figure 8, initially when

only CD1 is present, the MPTCP connection closely tracks the

throughput ofCD1 and whenCD2 comes online, the system is able

to combine the throughput of both.

Lastly, we went on to a commuter train in our city and evaluated

our systems in unstable network conditions as experienced in a fast-

moving vehicle. Performance in a fast-moving vehicle is a challenge

because a cell phone moves through the coverage range of a lot of

200 400 600 800 1000 1200 1400 1600
Time (seconds)

0

2

4

6

8

10

12

14

Th
ro
ug

hp
ut
 (M

bp
s)

CD1
CD2
Algorithm

Figure 8: Shows the throughput obtained, based on the cellu-
lar traces, for individual CDs aswell as the combined system
throughput.

0 50 100 150 200 250 300
Time (seconds)

0

2

4

6

8

10

Th
ro
ug

hp
ut
 (M

bp
s)

CD1
CD2
Algorithm

Figure 9: Throughput as calculated from the cellular traces
collected on a commuter train.

base station experiencing frequent handoffs which can affect its

performance and the data rates that it can achieve.

We traveled on the train while going north, outside the city, on

the commuter train and the further north we went, the data rates

of the cellular CDs became more and more unpredictable but our

system was still able to closely track the best throughput that the

two interfaces could provide. Figure 9 shows the cellular traces for

the tests we ran on the commuter train. Both the interfaces are

suffering from bad connectivity but one is worse than the other.

Because of bad network conditions, one the working subflow often

goes into slow start mode, as can be seen at around 100 secs, but the

system is still able to trace the throughput of the better performing

interface. The bad network conditions also increased the number

of retransmission required by the protocol, as shown in Figure 10.

5 CONCLUSION & FUTUREWORK
In this paper, we address the challenge of increasing the upstream-

ing throughput by aggregating the throughput of nearby cellular

0 200 400 600 800 1000
No. of packets lost

0

50

100

150

200

250

300

350

Ti
m
e
(S
ec

on
ds

)

Figure 10: Shows the number of retransmissions based on
the cellular traces obtain from the train experiments.

devices. We propose a novel algorithm that schedules the virtual

wireless interfaces associated with a particular MPTCP connection

to maximize the throughput perceived at the server-side. Our sys-

tem works based on the feedback it receives from the server and

uses that feedback to add or drop subflows by means of a dynami-

cally adjusted threshold. We have implemented our algorithm in

the Linux kernel and evaluated it under different network condi-

tions. Through our evaluations, we show that we are able to achieve

close to optimal throughput for situations where the throughput of

the subflows was close to each other. For situations where a huge

difference exists in the throughput of the subflows, our algorithm

was successfully able to recognize and isolate the low performing

subflow to maintain a higher throughput with the help of better

performing subflows.

Our research can progress along the following directions: we

plan to examine network coding methods to deal with the out-of-

order packets although these methods are not likely to entirely

eliminate the need for dropping poorly performing subflows. We

also need to evaluate our system when multiple WiFi channels are

used.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science

Foundation under Grant No. 1302688.

REFERENCES
[1] [n. d.]. Huawei Demonstrates 5G-based Remote Driving with China Mo-

bile and SAIC Motor. http://www.huawei.com/en/press-events/news/2017/6/

5G-based-Remote-Driving.

[2] [n. d.]. I rode in a car in Las Vegas that was controlled by a

guy in Silicon Valley. https://www.technologyreview.com/s/609937/

i-rode-in-a-car-in-las-vegas-its-driver-was-in-silicon-valley/.

[3] [n. d.]. Use Multipath TCP to create backup connections for iOS. https://support.

apple.com/en-us/HT201373.

[4] Adnan Aijaz, Hamid Aghvami, andMojdeh Amani. 2013. A survey on mobile data

offloading: technical and business perspectives. IEEE Wireless Communications
20, 2 (2013), 104–112.

[5] Aruna Balasubramanian, Ratul Mahajan, Arun Venkataramani, Brian Neil Levine,

and John Zahorjan. 2008. Interactive wifi connectivity for moving vehicles. ACM
SIGCOMM Computer Communication Review 38, 4 (2008), 427–438.

[6] Mridul Mohan Bharadwaj and Jyotirmoy Karjee. 2016. Improved Cell Cover-

age in Hilly Areas using Cellular Antennas. International Journal of Advanced
Networking and Applications 7, 6 (2016), 2953.

[7] Ranveer Chandra and Paramvir Bahl. 2004. MultiNet: Connecting to multiple

IEEE 802.11 networks using a single wireless card. In INFOCOM 2004. Twenty-
third AnnualJoint Conference of the IEEE Computer and Communications Societies,
Vol. 2. IEEE, 882–893.

[8] Yung-Chih Chen, Yeon-sup Lim, Richard J Gibbens, Erich M Nahum, Ramin

Khalili, and Don Towsley. 2013. A measurement-based study of multipath tcp

performance over wireless networks. In Proceedings of the 2013 conference on
Internet measurement conference. ACM, 455–468.

[9] Yung-Chih Chen, Erich M Nahum, Richard J Gibbens, Don Towsley, and Yeon-

sup Lim. 2012. Characterizing 4g and 3g networks: Supporting mobility with

multi-path tcp. University of Massachusetts Amherst, Tech. Rep (2012).

[10] Andrei Croitoru, Dragos Niculescu, and Costin Raiciu. 2015. Towards Wifi

Mobility without Fast Handover.. In NSDI. 219–234.
[11] Savio Dimatteo, Pan Hui, Bo Han, and Victor OK Li. 2011. Cellular traffic offload-

ing through WiFi networks. In Mobile Adhoc and Sensor Systems (MASS), 2011
IEEE 8th International Conference on. IEEE, 192–201.

[12] Alan Ford, Costin Raiciu, Mark Handley, and Olivier Bonaventure. 2013. TCP
extensions for multipath operation with multiple addresses. Technical Report.

IETF.

[13] Domenico Giustiniano, Eduard Goma, Alberto Lopez, and Pablo Rodriguez. 2009.

WiSwitcher: an efficient client for managing multiple APs. In Proceedings of the
2nd ACM SIGCOMM workshop on Programmable routers for extensible services of
tomorrow. ACM, 43–48.

[14] Bo Han, Pan Hui, VS Anil Kumar, Madhav V Marathe, Jianhua Shao, and Aravind

Srinivasan. 2012. Mobile data offloading through opportunistic communications

and social participation. IEEE Transactions on Mobile Computing 11, 5 (2012),

821–834.

[15] Wenjie Hu and Guohong Cao. 2017. Quality-aware traffic offloading in wireless

networks. IEEE Transactions on Mobile Computing 16, 11 (2017), 3182–3195.

[16] Srikanth Kandula, Kate Ching-Ju Lin, Tural Badirkhanli, and Dina Katabi. 2008.

FatVAP: Aggregating AP Backhaul Capacity to Maximize Throughput.. In NSDI,
Vol. 8. 89–104.

[17] Anh Le, Lorenzo Keller, Hulya Seferoglu, Blerim Cici, Christina Fragouli, and

Athina Markopoulou. 2014. MicroCast: Cooperative video streaming using

cellular and D2D connections. arXiv preprint arXiv:1405.3622 (2014).
[18] Yeon-sup Lim, Yung-Chih Chen, Erich M Nahum, Don Towsley, and Richard J

Gibbens. 2014. Improving energy efficiency of mptcp for mobile devices. arXiv
preprint arXiv:1406.4463 (2014).

[19] Philip Lundrigan, Mojgan Khaledi, Makito Kano, Naveen Dasa Subramanyam,

and Sneha Kasera. 2016. Mobile Live Video Upstreaming. In Teletraffic Congress
(ITC 28), 2016 28th International, Vol. 1. IEEE, 121–129.

[20] Hyunwoo Nam, Doru Calin, and Henning Schulzrinne. 2016. Towards dynamic

mptcp path control using sdn. In NetSoft Conference and Workshops (NetSoft),
2016 IEEE. IEEE, 286–294.

[21] Lyndon Ong. 2002. An introduction to the stream control transmission protocol

(SCTP). (2002).

[22] Christoph Paasch, Gregory Detal, Fabien Duchene, Costin Raiciu, and Olivier

Bonaventure. 2012. Exploring mobile/WiFi handover with multipath TCP. In

Proceedings of the 2012 ACM SIGCOMM workshop on Cellular networks: operations,
challenges, and future design. ACM, 31–36.

[23] Christoph Paasch, Ramin Khalili, and Olivier Bonaventure. 2013. On the benefits

of applying experimental design to improve multipath TCP. In Proceedings of
the ninth ACM conference on Emerging networking experiments and technologies.
ACM, 393–398.

[24] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda,

Fabien Duchene, Olivier Bonaventure, and Mark Handley. 2012. How hard can

it be? designing and implementing a deployable multipath TCP. In Proceedings
of the 9th USENIX conference on Networked Systems Design and Implementation.
USENIX Association, 29–29.

[25] Filippo Rebecchi, Marcelo Dias De Amorim, Vania Conan, Andrea Passarella,

Raffaele Bruno, and Marco Conti. 2015. Data offloading techniques in cellular

networks: A survey. IEEE Communications Surveys & Tutorials 17, 2 (2015),

580–603.

[26] Hamed Soroush, Peter Gilbert, Nilanjan Banerjee, Mark D. Corner, Brian Neil

Levine, and Landon P. Cox. 2011. Spider: improving mobile networking with

concurrent wi-fi connections. In SIGCOMM.

[27] Hamed Soroush, Peter Gilbert, Nilanjan Banerjee, Brian Neil Levine, Mark D.

Corner, and Landon P. Cox. 2011. Concurrent Wi-Fi for mobile users: analysis

and measurements. In CoNEXT.
[28] Nathanael Thompson, Guanghui He, and Haiyun Luo. 2006. Flow Scheduling for

End-Host Multihoming.. In INFOCOM. Citeseer.

[29] Damon Wischik, Costin Raiciu, Adam Greenhalgh, and Mark Handley. 2011.

Design, Implementation and Evaluation of Congestion Control for Multipath

TCP.. In NSDI, Vol. 11. 8–8.

http://www.huawei.com/en/press-events/news/2017/6/5G-based-Remote-Driving
http://www.huawei.com/en/press-events/news/2017/6/5G-based-Remote-Driving
https://www.technologyreview.com/s/609937/i-rode-in-a-car-in-las-vegas-its-driver-was-in-silicon-valley/
https://www.technologyreview.com/s/609937/i-rode-in-a-car-in-las-vegas-its-driver-was-in-silicon-valley/
https://support.apple.com/en-us/HT201373
https://support.apple.com/en-us/HT201373

	Abstract
	1 Introduction
	2 Related Work and Background
	2.1 Multipath TCP
	2.2 Wireless Network Interface Virtualization

	3 Methodology
	3.1 Algorithm 1: Client-Side Throughput Calculation
	3.2 Rationale Behind probe_lists
	3.3 Algorithm 2: Globally Aware Dynamically Adjusted
	3.4 Initial Sub-flow Selection

	4 Evaluation
	4.1 Calculating Throughput Threshold
	4.2 Base Algorithm vs Base Implementation
	4.3 Feedback loop vs Base algorithm

	5 Conclusion & Future Work
	Acknowledgments
	References

