
Towards Wireless Environment Cognizance
Through Incremental Learning

Aniqua Baset
University of Utah
aniqua@cs.utah.edu

Christopher Becker, Kurt Derr, Samuel Ramirez
Idaho National Lab

christopher.becker, kurt.derr, samuel.ramirez@inl.gov

Sneha Kasera, Aditya Bhaskara
University of Utah

kasera, bhaskara@cs.utah.edu

Abstract—With the tremendous increase in the use of wireless
devices, understanding the surrounding wireless/RF environment
is becoming essential for many application areas. In this work,
we develop the technical building blocks needed for a spectrum
monitoring system that can incrementally learn about the signals
present in a deployed environment. We achieve “incremental
learning (IL)” by identifying and grouping the new/unknown
signals and, automatically building new machine learning (ML)
models for detecting them. A thorough evaluation of our ap-
proach demonstrates its adaptability and high accuracy with
signal data from several over-the-air scenarios.

I. INTRODUCTION

Monitoring and understanding the surrounding wireless/RF
environment is a long-coveted ability. Past motivations for
such ability mainly came from defense/military needs. With
the tremendous growth in the use of wireless devices, such
ability for wireless-environment cognizance (WEC) is becom-
ing relevant in nonmilitary application areas as well. For
instance, modern infrastructure and industrial facilities are
increasingly relying on wireless devices for automation, mon-
itoring and control of equipment, inventory tracking, etc [1].
There have been several reports of industrial process disruption
by interference from personal/external devices, leading to
downtime and safety hazards [1]. Concerns like these have
created a growing need for not just continuous monitor-
ing, but cognizance of the surrounding wireless environment
to distinguish between the new/unexpected signals and the
known/expected signals.

In this work, we take an incremental learning (IL) ap-
proach to realize WEC. We achieve IL by identifying and
grouping the new/unknown signals present in the deployed
environment and automatically building new machine learning
(ML) models for detecting them1. Fig. 1 depicts our spectrum
monitoring system for WEC using IL. Our system comprises
of three modules: learning, known signal(s) classification with
unknown signal detection (KSC+USD), and clustering. At the
start, the learning module learns the necessary ML models for
classification of known signal classes from labeled input data.
The KSC+USD module utilizes the current learned models
to determine whether or not an input signal, to be classified,
belongs to one of the known classes. If the input signal
does not belong to any known class, the KSC+USD module

1Different than IL in ML nomenclatures where traditionally IL refers to
updating models based on new data. On the contrary, we are updating the
classification support hence the list of the ML models.

Learning Clustering

Known signal classification
+ unknown signal detection

(KSC+USD)

Signal class/
Unknown

Unknown
signals

Labeled data of
known signal classes

Grouped data of
unknown signals

User/
External
SystemDatabase of learned

ML models

RF
Measurement

Source

Fig. 1: Our IL based spectrum monitoring system for WEC

classifies it as unknown and feeds it to the clustering module.
After receiving sufficient number of unknown signals, the
clustering module uses unsupervised ML to cluster them, not
necessarily in real-time, into groups. Next, this group data
is fed into the learning module which learns the necessary
ML models for each group. TheKSC+USD module can now
classify an input as belonging to one of the known classes or
one of the found unknown classes.

The benefits of our IL based spectrum monitoring system for
WEC are manifold. IL can help a monitoring system to adapt
to the anomalies/deviations present in different deployed envi-
ronments by adding ML classification models for the detected
deviations. IL can also reduce manual effort in preparing a
monitoring system for a new deployed environment—instead
of manually collecting new signal data, labeling it, and training
ML models, we can just let the system run and learn about the
environment. To the best of our knowledge, we are the first to
present a spectrum monitoring system with IL capability for
realization of WEC.

Key challenges and our approach: We describe the key
challenges in designing different modules of our system and
our approaches to tackle those below.

First, for the KSC+USD module, we need a classification
process that can classify an incoming measurement or input to
one of the known/expected signal classes and at the same time,
can detect the presence of new/unknown signals. Techniques
for signal type and/or modulation classification have been
heavily researched in the past [2]–[10]. These techniques,
however, are designed to classify signals only as one of the
trained or known signal-classes. When fed with an unknown
signal class or simply background noise, these techniques
would incorrectly classify the input as one of the known
classes, rather than acknowledging it as ‘new’. To address
this challenge, we design our KSC+USD module to use a
combination of novelty detectors each dedicated to a different
known signal class. Novelty detection is a class of machine

learning algorithm that can determine whether an input is
novel or not-novel (i.e., whether the input belongs to the
same class as the training data or not). If all of the novelty
detectors for known classes predict an input as novel, our
system concludes that the input is either from an unknown
signal class or is just background noise. Our system uses
an ML-based approach to distinguish between noise and
signal to filter out noise inputs. Our use of a combination
of novelty detectors serves a second purpose—it provides us
with a flexible classification system that can easily incorporate
support for classifying unknown signals for the IL capability.
Our design for KSC+USD is easily extensible to new signal
classes since adding or removing signal classification support
does not require retraining or changing previously learned
novelty detectors.

The second challenge is the clustering of the detected
unknown signals. Though some of the recent works on un-
supervised learning for wireless signals [11], [12] develop
data representation for clustering, they do not investigate the
clustering process itself in details. We develop a custom,
hierarchical clustering approach that does not require prior
knowledge of the possible number of unknown signal clusters
in the wireless environment. Our clustering method initially
puts all signal data points in a single cluster, and iteratively
divides the initial cluster and subsequent clusters until no
significantly different clusters could be formed. Besides the
clustering algorithm, we also need to tackle some practical
challenges. For instance, the dataset that we need to work
with for clustering can be very large depending on the target
environment (e.g., we can get ∼60,000 128-bin Fast Fourier
Transforms (FFTs) in just one minute from IEEE802.11g
beacons alone). In order to reduce the data samples to practical
levels, we exploit the fact that sequential data points are
most likely part of the same signal transmission, and hence
belong to the same cluster. Therefore, instead of clustering
all the data points, we first group consecutive data points and
only consider the group means for clustering. This grouping
tremendously reduces the data points that we must cluster.
Furthermore, we find that the use of group means, instead of
all the data samples, reduces the focus on variations present
in data points and puts more attention on the variations across
different signal classes.

Finally, in practical scenarios, signals will not always align
with our monitoring center frequency and can appear shifted
in the frequency domain depending on their operating chan-
nels. For instance, when observing a 25MHz band centered
at 2.437GHz, we can encounter ZigBee signals centered
at 2.430GHz, 2.435GHz, or 2.440GHz. In the KSC+USD
module, the novelty detector for ZigBee must predict ZigBee
from all of these three channels as not novel even if they
are shifted from those in the training dataset. Likewise, the
clustering module should place ZigBee signal data from all
of these channels in same cluster rather than forming three
separate clusters. To this end, we use a shift-invariant feature
representation of signal data which is insensitive to frequency
shifts for both KSC+USD and clustering modules. Again,

this practical challenge of detecting shifted signals were not
investigated previously in the traditional signal/modulation
detection works cited earlier.

We evaluate our KSC+USD module with IEEE802.11g
and ZigBee as known signals. Using over-the-air signal data
from different bands and environments, we show that the
KSC+USD can classify known and unknown signals with
98.29% and 99.65-100% accuracy, respectively. Our signal
versus noise classification in KSC+USD also shows 99% or
higher accuracy, even when the Signal-to-Noise-Ratio (SNR)
is very low. For the clustering module, we show that our
clustering process can find the exact number of signal clusters
or a close number in various over-the-air settings. Finally, our
novelty detectors built automatically from clustering results
achieve similar performance as in the case of labeled data—
98.45% accuracy for known and 91.4% or higher accuracy for
unknown signals.

Summary of our contributions:
• A novel methodology for unknown signal detection along

with known signal classification.
• A novel methodology for unknown signal classification

aka clustering along with a set of pre- and post-clustering
steps that leverage the domain information.

• A thorough evaluation of our approach that demonstrates
its adaptability and high accuracy with signal data from
several over-the-air scenarios.

II. KNOWN SIGNAL CLASSIFICATION + UNKNOWN
SIGNAL DETECTION (KSC+USD) MODULE

The workflow of our KSC+USD module is presented
in Fig. 2. This module continuously receives In-phase and
Quadrature (IQ) samples from an RF measurement source.
It forms an IQ set with |SIQ|=NL×NF samples and makes
a classification decision for each such sample set. It first
enqueues each of the IQ sets to a fixed size queue, Q
using a smart enqueuing algorithm, SENQUEUE, outlined in
Algorithm 1. When the classification process for a IQ set is
completed, our module dequeues the next IQ set and computes
NL FFTs where the number of bins for each of the FFTs is
NF (denoted as SFFT in Fig. 2). Next, our module uses a
set of Novelty Detectors (ND) for the known signal classes.
The ND for signal class ki predicts if an input is novel (i.e.,
it does not belong to class ki) or not-novel (i.e., it belongs to
class ki). If all of the NDs find an input to be novel, the input
is either from an unknown signal class or background noise.
Then, our module also forwards the SFFT to a Signal/Noise
Classifier (SNC) block to determine whether an input is signal
or noise. Finally, our module makes the final classification
decision based on the results from the SNC and the NDs. In
the rest of this section, we discuss the details of SENQUEUE,
the NDs, the SNC, and the final classification decision process.

A. Smart enqueuing algorithm, SENQUEUE

The purpose of the queue, Q, is to temporarily hold in-
coming IQ sets until these are classified by the classification
process. The arrival rate at Q can be very high if we want to

FFTContinuous
IQ samples

Enqueue each SIQ
using SEnquEuE

Dequeue SIQ when
classification for

previous set finishes

Q

SIQ

Signal/Noise
Classifier (SNC)

Novelty Detector
(ND) for k1

ND for kn

SFFT

noise/
signal

k1/not-k1

kn/not-kn

k1/k2/.../kn/
Unknown

Rn

Symbols
• Q = fixed sized queue to hold the IQ sets
• SIQ = one IQ set = NL x NF IQ samples
• SFFT = one FFT set = NL FFTs, each is of NF-bins
• Rn = moving average of RSSIs of nm IQ sets predicted as noise
• k1, k2, …, kn = known signal classes

Fig. 2: Workflow of the KSC+USD module

Algorithm 1 Smart sample enqueuing algorithm
procedure SENQUEUE(SIQ, Rn, ps, pn, pr , pa)

R ← RSSI of the input IQ set, SIQ

r ← RAND([0, 1])
if (R > Rn & r < ps) || (R < Rn & r < pn)

then
r′ ← RAND([0, 1])
if Q is full & r′ < pr then

Remove one IQ set from a random position of
Q and append SIQ to Q

else if Q is not full & r′ < pa then
Append SIQ to Q

utilize the maximum capacity of an RF measurement source
and monitor comparatively wider spectrum at once (e.g., we
use an USRP X310 with a sample rate of 25e6 samples/sec as
the RF measurement source in our system). However, the pro-
cessing rate of IQ sets at Q is likely to be comparatively slower
because of the ML computations needed for the classification
process. Therefore, Q will overflow occasionally and incoming
IQ sets can be dropped. While using higher compute power
and/or efficient implementation of the classification process
can lead to reducing the loss of IQ sets, this loss cannot be
totally avoided. Hence, we devise SENQUEUE (Algorithm 1)
to allow the KSC+USD module to intelligently drop IQ sets
when needed. SENQUEUE considers an IQ set to be queued
in Q with probability ps if the computed Received Signal
Strength Indicator (RSSI) of the set is higher than the average
noise RSSI, Rn; otherwise, queues the set with probability pn.
We set ps > pn, so SENQUEUE favors IQ sets that are more
likely to contain signals over noise. Initially, Rn is initialized
to a very low value. After some IQ sets are classified as noise
by the SNC block, the value of Rn is automatically updated
accordingly. This allows the SENQUEUE to adapt to the noise
level of the deployed environment. Next, to avoid the Q to
be filled up quickly at the beginning, an input set is dropped
with probability pa even when there is room in Q. When Q is
full, an incoming IQ set replaces the last element of Q with
probability pr. In summary, SENQUEUE allows the KSC+USD
module to automatically balance the rate of incoming samples
and rate of the classification process without affecting the RF
measurement source. Such a design makes our system usable
across different compute platforms.

B. Novelty Detectors (NDs)

An ND for a signal class ki determines whether or not an
input belongs to ki. The first challenge for the ND is that
it needs to use an ML algorithm that can learn about the
characteristics of ki only from training data of ki. Traditional
binary classification algorithms are thus not suitable for our
purpose since they require training data from both positive
(ki) and negative (not ki) cases. Therefore, we use a novelty
detection algorithm for the ND.

The next challenge for the ND is that it must be frequency
shift-invariant, i.e., it should be able to detect a signal even
if the signal appears to be shifted in the frequency domain
in comparison to those used for training. We require that the

ML model for the ND learns the characteristics or patterns
of ki irrespective of the frequency shift. We can achieve
frequency shift-invariancy either by using (i) a shift-invariant
feature representation as input to a novelty detection algorithm
or (ii) a more complex algorithm that itself can learn shift-
invariancy of input data. Learning the shift-invariancy can
be hard since there will be more hyperparameters to tweak.
Moreover, we must make sure that the ML model indeed learns
a shift-invariant representation of the input signal. Therefore,
we opt for a simple algorithm with the shift-invariant feature
representation. This approach is especially useful for the case
when we need to automatically learn NDs for unknown signal
classes that we find (in Sec. IV).

As the shift-invariant feature representation for an ND, we
use the m-SCF that we derive from the Spectral Correlation
Function (SCF)2. We first compute SCF using the time smooth-
ing [13] method as follows:

SCF(f, α) =
1

NL

NL∑
l=1

FFTl[f]×FFT∗
l [f−α] (1)

where, FFTl[f] is the lth FFT of the signal at frequency f ,
FFT∗

l [f−α] is the complex conjugate of the FFT of the signal
at frequency bin, f , shifted by α. Next, we compute m-SCF
from the magnitude of complex SCF as follows:

m-SCF = minmax norm01(max
f
|SCF(f, α)|) (2)

where, minmax norm01 normalizes input to new range [0,1]
The resulting m-SCF is an NF -sized array where NF is

the number of FFT bins being used. We do a min-max
normalization of the m-SCF so that same signals with different
power levels result in a similar m-SCF. The m-SCF of different
signals results in different patterns (Fig. 3a) as a specific pat-
tern depends on the signal waveform as well as the bandwidth.
Most importantly, same signals result in almost similar pattern
even if the signals are shifted in frequencies. For example,
ZigBee signals of different channels (Fig. 4a) have almost
similar m-SCF (Fig. 4b). However, different target signals can
have similar looking patterns in their corresponding m-SCF
when they have comparatively narrower bandwidths than the
monitoring bandwidth. For example, if we use 25MHz as the
monitoring bandwidth, the m-SCF patterns of ZigBee (2MHz)
and Bluetooth (1MHz) are quite similar (Fig. 3b).

Finally, we need to choose a novelty detection algorithm
2Different than α-profile from [7], [8] which is computed from Spectral

Coherence Function, not from SCF as in our case.

(a) (b)

Fig. 3: m-SCF of different signals

(a) FFT (b) m-SCF

Fig. 4: Shift-invariency of m-SCF

for the ND that can detect such small variances in the m-SCF
of different signals and at the same time is invariant to the
differences in m-SCF of same signal. For this purpose, we
investigate a one-class SVM [14] and an autoencoder [15]
based novelty detection. We find that the one-class SVM
is inadequate for the ZigBee vs Bluetooth case, while the
autoencoder based novelty detection is very accurate. There-
fore, we use an autoencoder based approach for the ND.
An autoencoder is a type of neural network that has the
same number of input and output nodes and tries to learn
to output a vector X̂ from an input vector X such that X̂
≈ X [16]. The autoencoder network can be used for novelty
detection based on the reconstruction error (‖X−X̂‖2). When
an autoencoder is trained only on data from a particular class,
the reconstruction errors will be lower for inputs that belong
to same class as the training data since the trained network
has learned how to represent the training data. In contrast,
the errors will be higher for data from other classes than
the trained one. Therefore, our autoencoder based ND for
signal class ki uses the reconstruction error to decide if an
input belongs to ki or not. Specifically, we consider an input
m-SCF, X to be of ki if the weighted reconstruction error,
(‖(X−X̂)∗W ‖2) is less than that of the 98th percentile of
all training data. We use linearly decreasing weights for W
to emphasize the differences/similarities in X vs X̂ at the
beginning than at the end. This is because the m-SCF of the
same signal but of different SNRs have differences at the end
(as shown in Fig. 5) whereas max-SCFs of different signals
mainly differ at the beginning (Figs. 3a, 3b). Therefore, the
reconstruction error at the beginning part is more crucial than
at the end in discerning novelty.

C. Signal/Noise Classifier (SNC)

The SNC determines whether an input is a signal or noise,
i.e., when signals are absents and we are actually observing
just background or thermal noise. We use Spectrum Flatness
Measure (SFM) for the SNC. SFM [17] is widely used in audio
applications to detect voice activity vs silence in audio data,
which is similar to our task of discerning signal vs noise. SFM

Fig. 5: m-SCF of same signal with different SNR

is defined as the ratio of the geometric mean to the arithmetic
mean of the FFT magnitudes. The SFM measures whether
spectrum energy is concentrated at a single frequency or it
is distributed evenly over all the frequencies. In the extreme
cases, SFM=0 for tones and SFM=1 for white noise. In our
case, we find that, SFM ≥0.98 indicates noise and SFM ≤0.96
indicates the presence of signal. However, 0.96< SFM <0.98
indicates that there might be noise or a very low SNR signal.
Therefore, we also incorporate a ML based approach in the
SNC to determine signal versus noise when computed SFM
value for input FFT set is in the (0.96, 0.98) range.

For this ML based approach, we use a binary classifier
trained with noise and signal spectrograms (i.e., a set of FFTs).
In the spectrogram of any signal, frequency bins over the
time axis are correlated. In contrast, power is distributed,
evenly for perfect White Gaussian Noise, or almost evenly
for real-life noises, over the entire band in one FFT in noise
spectrograms. Furthermore, for noise, from FFT to FFT, there
is no correlation in frequency bin positions of peak powers.
Hence, there is no correlation in time as well as the frequency
axis in noise spectrograms . We exploit these distinguishable
characteristics of noise and signal spectrograms and train a
Convolutional Neural Network (CNN) for predicting signal
versus noise. We choose CNN as it has been one of the most
effective class of neural networks [16] for 2-dimensional data
which is the case for the spectrograms.

While using only the CNN can give us the same accuracy
as our combined (SFM+ML) approach, it is computationally
expensive to run the CNN prediction for every input which in
turn can lead to losing more samples at Q. This computational
overhead justifies our combined approach.

D. Final classification decision

The KSC+USD module finally combines the results of the
SNC and the NDs to determine the signal class. This module
generally gives precedence to the SNC result over the NDs’
results. Therefore, it marks the output signal class as noise
if SNC predicts noise. It marks the output signal class as
unknown if all of the NDs predict not-ski and the SNC outputs
signal. In the case of multiple NDs predicting ski , the module
can either mark the output as miscellaneous or output all of
the signals classes that predicted the input as their signal with
some low confidence score. The specific choice in this case
will depend on the application of the classification system.

III. CLUSTERING MODULE

The clustering module determines the groups in unknown
signals which is key for achieving the IL capability. The
components of this module are summarized in Fig. 6. This
module first performs several pre-clustering steps to prepare

Do
FFT

Remove
noise and

known
signals

Do CPD on
each group
to segment
multi-signal
type groups

Remove
outliers

from each
group

Do shift-invariant
transform of mem-
bers of each group

and get group centers
ignoring outliers

Cluster
group

centers using
Hier-Clust

Assign group
members to

clusters same
as their group

centers

Remove
outliers

from each
cluster

Select
clusters to
forward to
learning
module

Recording
of
IQ

samples
over period,

t
Post-clustering stepsPre-clustering steps

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 6: The workflow of the clustering module

the input data for clustering, next it employs a clustering
algorithm to identify the unknown signal groups, and finally it
performs post-clustering steps to refine the clustering results to
be forwarded to the learning module. We describe these pre-
clustering steps, our clustering algorithm, and post-clustering
steps in the following subsections.

A. Pre-clustering Steps

Depending on the use cases and available resources, the type
of input to the clustering module can vary. The input data can
be a recording of IQ samples over some period of time for
identifying unknown signal groups present in that time frame,
or it can be just a recording of FFT sets that were classified as
unknown by the KSC+USD module. The clustering module,
therefore, skips some steps as needed based on input data type.
Fig. 6 shows all the steps for the basic case when the input
is a recording of IQ samples. The module first performs step
(a) to get frequency domain data, and (b) to remove noise and
known (if any) signal FFTs using the SNC and NDs of known
signals of the KSC+USD module.

After step (b), the module ends up with groups of disjoint
FFTs over time. Now, we exploit the fact that a single
transmission will result in multiple continuous FFTs (e.g., one
IEEE802.11g beacon corresponds to ∼100 continuous 128-
bin FFTs) and consecutive FFTs are most likely from the
same cluster. Therefore, we cluster only the group centers
(i.e., mean of group members) and consider the cluster labels
for group members the same as their centers. This approach
greatly reduces the number of data points to work with.
However, before using the group centers, we need to consider
two possible cases—(I) all the FFTs in a group represent a
single transmission and (II) a group comprises of multiple
transmissions of different types. Case (I) is the most common
one, though case (II) is not rare. To handle case (II), we employ
Change Point Detection (CPD) on each of the FFT groups
at step (c). CPD is a class of techniques to detect changes
in a series of data [18]. Specifically, we use Pruned Exact
Linear Time (PELT) [18] as the CPD method. Thus, at step
(c), each of the FFT groups is divided into sub-groups based
on change points identified by the PELT method. Next, step
(d) removes outliers in a group in case the change points
detected in step (c) do not exactly align with changes and
introduce errors. A group member gi is considered as an outlier
if EUCLIDEANDISTANCE(gi, gc) ≥ mg∗σ, where gc is the
group center, σ is the standard deviation of the group, mg is
a multiplicative constant.

Finally, step (e) performs shift-invariant transformation on
the group members so that frequency hopping signals end up

Algorithm 2 Our hierarchical clustering algorithm
procedure HIER-CLUST(D, rt, vmax, BaseAlgo)

S ← single cluster, c0 with all data of D
R ← empty
while S is not empty do

c ← remove one cluster from S
c1, c2 ← divide c in 2 clusters using BaseAlgo
vp ← variance of parent cluster c
v1, v2 ← variances of children clusters c1, c2
vc ← (|c1|∗v1+|c2|∗v2)/|c|
if vc/vp >= rt and vp <= vmax then

R ← c
else

S ← c1, c2
return R

in same cluster but different signals with the same frequency
end up in different clusters. Specifically, we compute m-SCF
using Equation 2—the same transformation used for the NDs
as described in Sec. II-B. Then, we compute the group centers
of the transformed group members and forward those to the
clustering algorithm.

B. Our Clustering Algorithm

There is a plethora of clustering algorithms available in
the literature. The choice of a specific clustering algorithm
depends on the context and specific application at hand. In
our case, we need an efficient algorithm that does not need to
know the number of clusters a priori. One common approach to
handle an unknown number of clusters is to try different cluster
numbers with standard approaches, such as, k-means [19],
and use an “elbow method” to determine the actual number
of clusters [20]. The intuition behind the elbow method is
that if we monitor the changes of “cost” of clustering with
different number of clusters, after the “elbow” point, i.e., the
right number of clusters, the cost will not change significantly.
However, we find that this method does not work well in our
setting. Indeed, settings where there is no definite elbow in
the number of clusters vs cost plot have also been reported
earlier [20]. In our setting, we find that a divisive hierarchical
clustering method works better. There are multiple ways to
achieve divisive clustering [19]. The high-level idea in all
of them is to first consider all the data points to belong to
the same cluster, and recursively partition the clusters until a
terminating criterion has been met. It is crucial to determine a
suitable terminating criterion. For our case, we find that we can
use the variance of a cluster (i.e., the average squared distance
of a point to its center) to determine the quality of a cluster
and to decide whether or not more partitions are needed.
The process of our hierarchical algorithm, HIER-CLUST, is

TABLE I: Dataset
Name Environment Controlled equipment setup Signal types

AnechB Anechoic
chamber

Bluetooth headphone, cell phone Bluetooth
AnechW Linksys WRT54GL running DD-WRT IEEE802.11g beacons

Open2.4GHz
Office room

Linksys WRT54GL, ZigBee dongles IEEE802.11g beacons and ZigBee as well as other 2.4GHz signals from the
surrounding environment from sources unknown to us

Open5GHz N/A Campus WiFi (5GHz)
Open5.6GHz Two vehicular On-Board Units IEEE802.11p

outlined in Algorithm 2. HIER-CLUST first considers all the
input data D as a single cluster. At each step, HIER-CLUST
divides a current cluster c into two sub-clusters using a simple
base algorithm (e.g., k-means). Next, it computes a weighted
combination of the variances of the child clusters (denoted
vc). If vc is fairly close to the variance of the original cluster,
vp, it indicates that there is not much to gain by dividing
cluster c. In that case, HIER-CLUST ignores the division and
does not split cluster c. However, at this step, HIER-CLUST
also checks whether or not vp is smaller than the allowed
maximum variance vmax for a final cluster. A comparative
higher vp indicates that a final cluster has not been attained
yet and further divisions are needed although vc/vp indicates
otherwise.

We empirically find the appropriate values for rt and vmax.
The value of vc/vp, hence rt can be from range [0, 1]. If
we choose rt closer to 1, HIER-CLUST will over-cluster,
i.e., will result in more than the “true” number of clusters.
Conversely, it will under-cluster when rt is close to 0. We
find that 0.42≤rt≤0.46 consistently finds good clusters. We
choose the higher value (i.e., 0.46) as our threshold as we favor
over-clustering than the under-clustering. Intuitively, rt=0.46
means that we do not sub-divide a cluster unless the variance
improves by 54% or more by dividing. By examining the
inherent variances of different signal classes, we find that the
variances are always ≤0.5, hence we choose vmax=0.5.

C. Post-clustering Steps

After clustering the group centers, the group members
(except the ones ignored in step (d)) are assigned same cluster
labels as that of their group centers. The clustering results
might not be perfectly accurate. Therefore, an outlier detection
step is performed on the found clusters before proceeding
further. The same approach as step (d) is used to find and
remove the outliers in a cluster. A cluster member ci is
considered as an outlier if EUCLIDEANDISTANCE(ci, cc) ≥
mc∗σ, where cc is the cluster center, σ is the standard
deviation of the cluster, mc is a multiplicative constant.

Next, we need to choose which clusters to forward to the
learning module. Specifics of choosing clusters will vary with
the application. Generally, we ignore a resultant cluster if the
cluster size is below a threshold.

IV. LEARNING MODULE

The learning module trains an autoencoder to be used as
the ND for a found cluster or a known signal class si from a
dataset of FFT sets (NL∗NF FFTs), all belonging to si. We
describe the methodologies of this module below.

First, the module randomly chooses some FFT sets of the
received dataset and adds random noise to generate some low
SNR examples. This aids in learning what part of the m-SCF
for the current class is unique to noise variations versus what
part will be affected by such variations. After adding noise,
the module computes the m-SCFs of the modified dataset. This
process also helps the module to generate new data when the
received number of data points are low.

The next step is to choose the right model parameters
for the autoencoder. An autoencoder is a combination of
an encoder and decoder network. We must choose different
hyperparameters (e.g., batch size, the values of nj i.e., the
number of nodes in layer j, optimizer, activation function
of nodes, loss function, etc.) as well as the the network
architecture (number of layers in encoder/decoder network).
In order to choose the “best” values of the model parameters,
we use k-fold cross validation [21]. We use (k−1) folds
of the training data to train an autoencoder for a particular
architecture and hyperparameter values. We use the remaining
fold as the test dataset and compute reconstruction error.
We repeat the process k times and use the average of the
reconstruction errors of each run as the performance for that
particular setting i.e., architecture and hyperparameter values.
We choose the setting that maximize the average performance
on k runs. By withholding some part of the data and testing
with the withheld data, we check the generalization of the
learned model for detecting unseen data.

Finally, we need to train the final autoencoder network based
on the best performing setting. In the previous step, we use
a fixed epoch number. Now, for the final model we need to
find out the appropriate epoch number needed for training the
model. For this, we randomly split the training data in training
and validation set and monitor validation loss for each epoch.
We train the autoencoder till the loss for the validation data
stops improving. This process is known as early stopping and
prevents overfitting [16].

V. EVALUATION

Implementation. We implement our KSC+USD module as
a standalone Qt based C++ application. In our application,
we use GNU Radio [22] blocks for acquiring IQ samples
from a USRP X310. However, we implement the rest of
our application without using GNU Radio, for maximizing
customization and overcoming the limitations in developing a
real-time system with GNU Radio that we discussed in [23].
We implement the offline clustering and learning modules
using Python. We use Keras [24] with Tensorflow [25] backend
to train our ML models for the NDs and the SNC. We use

frugally-deep [26] to run the prediction on these Keras models
in our C++ application for the KSC+USD module.

Datasets. We capture over-the-air signals in different bands
and environments using USRP X310 and GNU Radio3. Specif-
ically, we record IQ values using a sampling rate of 25 million
samples/sec (Msps) and a monitoring bandwidth of 25MHz.
We list our datasets in Table I; each of the datasets contains
several such IQ recordings.

We first evaluate the real-time performance of our
KSC+USD module in Sec. V-A1. We present the classi-
fication performance of the SNC and known signal NDs
in Sections V-A2, V-A3 using the over-the-air datasets of
Table I. Next, we evaluate the performance of our clustering
method (HIER-CLUST) in Sec. V-B. Finally, we evaluate the
IL capability of our overall system in Sec. V-C. For all of
these evaluations, we use NF=128 and NL=8.

A. Evaluating the KSC+USD module

As a proof-of-concept, we train NDs for ZigBee and
IEEE802.11g to be used as known signal NDs in our
KSC+USD module. We choose ZigBee as an example of
a narrow bandwidth signal with simple modulation and,
IEEE802.11g as an example of a wider signal with multi-
carrier modulation. We evaluate the time and classification
performance of the module below.

1) Real-time performance: For this evaluation, we use an
USRP X310 as the RF measurement source. We run our
KSC+USD module on a Dell M4800 laptop (2.8GHz, 4-
core 64-bit Intel i7-4810MQ processor, 32GB RAM) running
Ubuntu 18.04.1 LTS and connected to the X310 using a 1Gbps
Ethernet link. We set the X310 to monitor a spectrum of
bandwidth 25MHz with 25Msps sample rate.

We find the time needed for overall classification for one IQ
set (from FFT and onward in Fig. 2) to be 4.6ms on average.
The SNC is the key contributor to this time. Therefore, the
classification time can be improved if we just use SFM for the
SNC instead of using SFM+ML. With just SFM, classification
takes 0.8ms on average. However, the use of just SFM can
result in missing some very low SNR signals (< 0dB as
discussed in Sec. V-A2). The classification time can also
be improved by using higher performing computing platform
than ours. Therefore, depending on the computation resources
available and the desired detection resolution, one can choose
to run our system with just SFM based SNC or with SFM+ML
based SNC.

Next, we evaluate the capability of the KSC+USD to handle
the high sample rate of our RF measurement source, USRP
X310. We set the values of ps, pn, pr, pa of Algorithm 1 to
0.9, 0.1, 0.5, 0.8 respectively. GNU Radio reports overflows
and gets into an unstable state when a process cannot process
the data as fast as it is being sent from the USRP. We run our
system for about 2 hours and GNU Radio does not report any
overflows. To keep up with our 25Msps sample rate, for one
classification decision with NF×NL=128×8=1024 samples,

3To reduce the the center frequency spike due to DC offset in samples
collected using USRP, we use tune request and calibration files.

Fig. 7: SNR vs. classification accuracy of SNC

(a) Overall performance

(b) SNR vs performance of IEEE802.11g ND

Fig. 8: Evaluation of KSC+USD with IEEE802.11g and Zig-
Bee as known signals

the classification process must finish by ∼0.041ms to avoid
overflows. However, as mentioned above, for our case this
takes 0.8/4.2ms. Therefore, not getting overflows in our 2
hour run indicates that our SENQUEUE algorithm is helping
our ML-heavy KSC+USD module to keep up with the USRP
hardware.

2) Classification performance of SNC: First, we test the
performance of the SNC with 257,198 labeled noise spec-
trograms and 430,205 labeled signal spectrograms from
Open2.4GHz. For both cases, we get ∼99% accuracy.

Next, we evaluate the performance on signal spectrograms
of different SNRs. As depicted in Fig. 7, the SNC can detect
signals of SNR as low as -4dB (groups 1, 2), -2dB (group
3), and 6dB (group 4). We use the RadioML dataset of [2]
for groups 1-3 and a custom dataset that is created by adding
noise to signal spectrograms from Open2.4GHz, Open5GHz,
Open5.6GHz for group 4. We separately evaluate for group
4 since differentiating signal versus noise spectrogram is
comparatively harder for low SNR signals of multi-carrier
modulation scheme like Orthogonal Frequency Division Mul-
tiplexing (OFDM) and wider bandwidth due to less correlation

TABLE II: Performance of HIER-CLUST vs k-means with elbow method (KEM)
(a) On unlabeled data

Data from # of data points after
k

HIER-CLUST KEM
Step (b) Step (e) k′ Result k′

Open5GHz 184,323 2,922 1 2 C1: 1,615 WiFi, C2:1,307 WiFi with different sub-carrier activities than C1 4
Open5.6GHz 106,284 1,804 1 2 C1: 1,802 IEEE802.11p, C2: 2 noise from some wideband signal 4
AnechB 1,492,988 14,996 1 3 C1: 9,268 Bluetooth, C2+C3: 5,728 noisy Bluetooth, most likely mixed with DC offset spikes 5

(b) On labeled data from Open2.4GHz
of data points after Ratio of # of data points to cluster in

largest to smallest class k Best NMI HIER-CLUST KEM
Step (b) Step (e) k′ NMI k′ NMI

1,326,244 13,251 20 5 0.9834 at 6 8 0.9609 3 0.8166
551,447 5,500 10 2 1.0 at 2 2 1.0 3 0.9459
501,752 5,000 5 4 0.9456 at 5 5 0.9298 4 0.8085

Note: k = Expected # of signals, k′ = Found # of clusters in both Tables (a) and (b)

among FFTs in a spectrogram than that of a spectrogram of
a simple modulation as in groups 1-3. Fig. 7 shows that the
accuracy for these difficult scenarios is still high for signals
of SNR as low as 6dB. If we use just the SFM for the SNC
instead of our combined SFM+ML approach, the SNC can
accurately detect signals of SNR > 0dB for groups 1-3 and
the performance is similar to Fig. 7 for group 4.

3) Classification performance of known signal NDs: For
both ZigBee and IEEE802.11g NDs, we use training data
from anechoic chamber recordings while we use regular indoor
environment recordings for the final performance evaluation.
This shows that the NDs do not necessarily need to be trained
on data obtained from the deployed environment. We present
our results for the following scenarios:

• Varied environments. Fig. 8a presents the overall per-
formance of ZigBee and IEEE802.11g NDs. 99.93% of the
Open5GHz and 100% of the Open5.6GHz signals are pre-
dicted as unknowns. Since there is no chance of encountering
ZigBee and IEEE802.11g in 5 and 5.6GHz band, it shows
that the NDs are very accurate in these environments. There is
only a 0.03% error for non-ZigBee, non-IEEE802.11g signals
from Open2.4GHz. Furthermore, there is only a 0.35% error in
detecting Bluetooth as an unknown signal which indicates that
the ZigBee ND performs accurately even in the problematic
case of Bluetooth as mentioned earlier in Sec. II-B. The overall
accuracy for known signals from Open2.4GHz is 98.29%.
Individually, the accuracy of the ZigBee ND for Open2.4GHz
ZigBee signals is 99.9% and the accuracy of the IEEE802.11g
ND for Open2.4GHz IEEE802.11g signals is 96.68%.

• Varied SNRs. We create a custom dataset of differ-
ent SNRs with signals from AnechW, Open5GHz, and
Open5.6GHz by adding Gaussian noise. We approximate the
SNRs of the original signal data as well as the custom noisy
data. We present the performance of the IEEE802.11g ND
for different SNR values in Fig. 8b which show that the ND
classifies IEEE802.11g signals of SNR as low as 5dB with
high accuracy.

B. Evaluating the clustering module

We present the results of our clustering method, HIER-
CLUST in Tables IIa, IIb. We also present the results of using

k-means with elbow method (KEM), the common approach
for clustering when the number of clusters is not known a
priori. In all the cases, data is fed into the clustering methods
after performing pre-clustering steps (a)-(e) of Fig. 6. For
step (b), we consider the set of known signal classes, K=∅.
As is evident from Tables IIa, IIb, our pre-clustering steps
tremendously reduce the number of data points to cluster.

For Table IIa, we use recordings from Open5GHz,
Open5.6GHz and AnechB, and we expect one signal class:
5GHz campus WiFi, IEEE802.11p, and Bluetooth respectively.
Though our HIER-CLUST method actually finds more than
one cluster for them, we find that the resultant clusters are
actually correct since there are variations in the over-the-air
recordings as we describe in Table IIa. We find that KEM does
not perform well in these cases.

For Table IIb, we use different combinations of labeled data
from Open2.4GHz. The labeled set includes: IEEE802.11g,
ZigBee, some 10MHz signals, partial signals from adjacent
bands, DC offset spikes from our receiver hardware, and some
narrow bandwidth signals. We vary the ratio of number of
data points of the largest to smallest class to evaluate the
performance of clustering in an unbalanced dataset. We use
Normalized Mutual Index (NMI) [27] to measure the quality of
the resultant clusters compared to the signal labels. Along with
the expected cluster number, we also report the best NMIs and
corresponding cluster numbers which represent the appropriate
cluster numbers in the data. Table IIb shows that HIER-CLUST
outperforms KEM and cluster numbers are close to those of
the best NMIs.

C. Evaluating the IL capability

We use one of the recordings from Open2.4GHz for this
evaluation. This recording contains signals from two ZigBee
channels, one IEEE802.11g channel, and other 2.4GHz devices
in the environment. We assume that the known signal list is
empty, therefore all the signals present in the environment are
unknown for the system. After the pre-clustering steps and
clustering with HIER-CLUST, we get a total of 6 clusters from
the recording: one with ZigBee signals (of two channels), one
with IEEE802.11g signals, one with partial signals from an
adjacent band, and three others for some narrow bandwidth

Fig. 9: Performance of NDs from clustering on same data as
Fig. 8a with NDs developed based on clustering result

frequency hopping signals. To compare with the performance
of NDs trained from labeled known signal data, we use our
learning module to train NDs for the first and second cluster.
Fig. 9 shows the performance of the resultant NDs on the same
data as Fig. 8a, which is based on the labeled data. As can
be seen from Figures 9, 8a, the NDs from clustering performs
almost identically to those from the labeled data. This demon-
strates that we can automatically build good quality NDs for
the detected unknown signals, thus showing the efficiency of
our overall incremental learning framework.

VI. RELATED WORK

To the best of our knowledge, we are the first to design
a spectrum monitoring system with IL capability, toward
the realization of effective WEC. However, in this section,
we discuss existing works that are related to some of the
components of our full system in addition to the related works
we cite in Sec. I. There is a recent line of research that
presents methodologies for identifying anomalous behavior in
spectrum usage with respect to time and/or frequency [28]–
[32]. For example, [31] detects anomalous scenarios like
presence of chirp signals when expecting only fixed-frequency
signals, and presence of infrequent signals. These past works
provide a binary answer—anomaly or not. In comparison, our
KSC+USD module also determines the class of the input.
Conceptually, these past works can be used as individual NDs
in our KSC+USD module. However, lack of discussion/results
on frequency-shift invariancy and time taken for classification
in these past works makes it harder to determine the feasibility
of using them as the NDs of our KSC+USD module.

VII. CONCLUSION

We designed a spectrum monitoring system for wireless-
environment cognizance that incrementally learns about the
wireless environment in which it is deployed. We have
presented not just new classification methods but a full
system design that is adaptive and robust against changes
in deployed environment and/or computing resources. We
addressed several practical challenges including supporting
flexible addition/removal of new signal classes without retrain-
ing existing models, detecting shifted signals, and clustering
without knowing the number of the unknown signals present a
priori. A thorough evaluation of our approach demonstrated its
adaptability and high accuracy with signal data from several
over-the-air scenarios.

VIII. ACKNOWLEDGEMENT

This research made use of the resources of the High
Performance Computing Center at Idaho National Laboratory,
which is supported by the Office of Nuclear Energy of the U.S.
Department of Energy and the Nuclear Science User Facilities
under Contract No. DE-AC07-05ID14517. This research has
also been supported by the National Science Foundation under
Grant No. 1564287.

REFERENCES

[1] M. Aksu et al., Requirements for Spectrum Monitoring in Industrial
Environments. US Department of Commerce, NIST, 2017.

[2] T. J. OShea et al., “Over-the-air deep learning based radio signal
classification,” IEEE J-STSP, vol. 12, no. 1, pp. 168–179, 2018.

[3] N. E. West et al., “Deep architectures for modulation recognition,” in
IEEE DySPAN, 2017.

[4] S. Rayanchu et al., “Airshark: detecting non-WiFi RF devices using
commodity WiFi hardware,” in ACM SIGCOMM IMC, 2011.

[5] T. J. OShea et al., “Convolutional radio modulation recognition net-
works,” in EANN. Springer, 2016, pp. 213–226.

[6] G. J. Mendis et al., “Deep learning-based automated modulation classi-
fication for cognitive radio,” in IEEE ICCS 2016, pp. 1–6.

[7] A. Fehske et al., “A new approach to signal classification using spectral
correlation and neural networks,” in IEEE DySPAN, 2005.

[8] T. J. Oshea et al., “Practical signal detection and classification in GNU
radio,” in SDR Forum Technical Conference (SDR), 2007.

[9] S. S. Hong et al., “DOF: a local wireless information plane,” in ACM
SIGCOMM, 2011.

[10] S. Rajendran et al., “Deep learning models for wireless signal classifi-
cation with distributed low-cost spectrum sensors,” IEEE TCCN, 2018.

[11] T. J. O’Shea et al., “Semi-supervised radio signal identification,” in
ICACT, 2017.

[12] Y. Gwon et al., “Blind signal classification via sparse coding,” in IEEE
GLOBECOM, 2016.

[13] R. S. Roberts et al., “Computationally efficient algorithms for cyclic
spectral analysis,” IEEE Signal Processing Magazine, 1991.

[14] B. Schölkopf et al., “Estimating the support of a high-dimensional
distribution,” Neural computation, vol. 13, no. 7, pp. 1443–1471, 2001.

[15] N. Japkowicz, C. Myers, M. Gluck et al., “A novelty detection approach
to classification,” in IJCAI, vol. 1, 1995, pp. 518–523.

[16] I. Goodfellow et al., Deep Learning, http://www.deeplearningbook.org.
[17] J. D. Johnston, “Transform coding of audio signals using perceptual

noise criteria,” IEEE J-STSP, vol. 6, no. 2, pp. 314–323, 1988.
[18] C. Truong et al., “A review of change point detection methods,” CoRR,

2018. [Online]. Available: http://arxiv.org/abs/1801.00718
[19] J. Friedman et al., The elements of statistical learning. Springer, 2009.
[20] D. J. Ketchen et al., “The application of cluster analysis in strategic

management research: an analysis and critique,” SMJ, 1996.
[21] E. Alpaydin, Introduction to machine learning. MIT press, 2014.
[22] “GNU Radio,” http://gnuradio.org/, 2017.
[23] C. Becker et al., “Experiences with using GNU Radio for real-time

wireless signal classification,” in GNU Radio Conference, 2018.
[24] F. Chollet et al., “Keras,” https://keras.io, 2015.
[25] M. Abadi et al., “TensorFlow,” https://www.tensorflow.org/.
[26] “frugally-deep,” https://github.com/Dobiasd/frugally-deep.
[27] D. Pfitzner et al., “Characterization and evaluation of similarity measures

for pairs of clusterings,” Springer KAIS, 2009.
[28] T. J. O’Shea et al., “Recurrent neural radio anomaly detection,”

arXiv:1611.00301, 2016.
[29] M. Walton et al., “Unsupervised anomaly detection for digital radio

frequency transmissions,” in ICMLA, 2017.
[30] Q. Feng et al., “Anomaly detection of spectrum in wireless communi-

cation via deep auto-encoders,” The Journal of Supercomputing, 2017.
[31] N. Tandiya et al., “Deep Predictive Coding Neural Network for RF

Anomaly Detection in Wireless Networks,” arXiv:1803.06054, 2018.
[32] S. Rajendran et al., “SAIFE: Unsupervised Wireless Spectrum Anomaly

Detection with Interpretable Features,” in IEEE DySPAN, 2018.

