
STRAP: Secure TRansfer of Association Protocol

Philip Lundrigan∗, Sneha Kumar Kasera∗, Neal Patwari†

∗School of Computing
†Department of Electrical and Computer Engineering

University of Utah, Salt Lake City, Utah, 84112
∗{philipbl, kasera}@cs.utah.edu, †npatwari@ece.utah.edu

Abstract—When several internet-of-things devices are required
to be installed in a smart home, significant effort is required
to provide each device with the association information for the
home’s wireless router. We design and build a novel protocol
called Secure Transfer of Association Protocol (STRAP), which
securely bootstraps connectivity between a set of deployed WiFi
devices and a home’s wireless router. We show that STRAP works
in a variety of environments and is faster than conventional
methods for connecting WiFi devices to home wireless routers.

Index Terms—Internet of Things, Network security, Wireless
networks

I. INTRODUCTION

Low-cost internet-of-things (IoT) and “smart home” devices

have applications in home security, home health care, aging-

in-place, and energy efficiency. Several sensors and actuators

may be required to be installed at one time in a home to

enable one of these applications. For example, an aging-in-

place system may use multiple motion sensors, chair or bed

sensors, and smart pill dispenser. As another example, a smart

HVAC control system may use motion sensors, temperature

sensors, thermostat, CO2 sensors, and air pollution sensors.

In this paper, we are specifically motivated by an application

in which sensors are installed in each of tens of thousands of

homes for collecting air pollution exposure data in large human

subject studies for epidemiological research into asthma and

other diseases [1]. An installer may bring and connect these

devices, or, alternatively, a kit may be mailed to the resident

with instructions to be self-installed. It is critical for the

installation to be fast and with as few steps as possible. An

installer’s time is expensive, and an untrained resident may be

discouraged or confused by a long or complicated installation

process.

Most IoT devices use the home WiFi to connect to the Inter-

net. Typically, these devices do not have a keyboard or screen,

making it much harder to provide it with information to access

a home’s existing encrypted WiFi network. Furthermore, many

of these inexpensive devices, as is the case with our air quality

sensors, have a WiFi network interface but no other network

interfaces. Therefore, these devices cannot be accessed using

any other network (e.g., Bluetooth) for installing the home’s

WiFi network name and password to allow them to access the

home WiFi network.

One existing approach for dealing with our security “boot-

strapping” problem is for the IoT device to act as a temporary

access point and ask the user to connect to it and provide

Fig. 1: Overview of STRAP components. The boot device

securely sends the network name and password out of the

home network to the unassociated devices.

it the home WiFi network name and password. This is a

common approach that many commercial devices use. While

this approach works well when connecting one new device,

the time to connect n devices scales linearly with n. Having

to enter the network name and password into each device

is cumbersome, time consuming, and error prone, especially

when tens of devices are to be installed in each home. As

IoT devices become more popular, we expect the number

of devices that need to be installed to increase, making this

problem worse. Another existing approach that uses enterprise

WiFi security solutions (discussed in Section V) is typically

not supported by consumer access points or home networks.

In this paper, we address the above problem of fast and

easy installation of IoT devices without using another network

interface. Fundamentally, there is a “chicken and egg” problem

here, as we need to securely transfer association information to

the devices, but to be able to make that transfer through stan-

dard WiFi, each device needs to already have the association

information and be connected to the network. We build a novel

protocol that allows an already connected device (the “boot”

device in Figure 1), either through Ethernet or WiFi, to se-

curely transmit data to a group of unauthenticated devices. We

use this ability to transmit the WiFi association information,

allowing the unconnected devices to authenticate and connect

to the network. We use key insights about how Ethernet and

802.11 frames are encapsulated, encrypted, and transmitted

by wireless routers to encode the credentials into the Ethernet

source and destination address fields. Our protocol provides

simplex communication to unassociated wireless devices by

overloading the source and destination addresses of Ethernet

and 802.11 frames, without requiring any modifications to the

wireless router.

Figure 1 shows the high level components of our protocol.

There are three components: a group of unassociated WiFi

devices that are waiting to receive the authentication creden-

tials, the home’s wireless router, and an already connected

device, the boot, which transmits the authentication creden-

tials. The boot device must already be connected through

Ethernet or WiFi so that it can send frames in the network.

The shaded region represents the secured home network. Our

approach works as follows: an installer enters the association

information into the boot device. Since the device is already

connected, it can send Ethernet frames into the network. The

boot encrypts the association information and inserts this data

into the source and destination addresses of multiple Ethernet

frames, overloading the purpose of these fields. Unassociated,

but listening devices, can receive this information, decrypt it,

and connect to the wireless network.

Our protocol assumes there is a trust relationship between

the boot and the devices that are trying to connect. Specifically,

the boot has one set of pre-shared secret keys with all the

unassociated devices. These keys are used for securing the

communication between the boot and the unassociated devices.

The pre-shared key has a similar role to the home’s network

name and password, but the benefit of using a pre-shared key

is that the installer has complete control over the key. This

allows the installer to pre-configure the devices with the key

before they are set up in a home. In essence, we are using a

second security association (the pre-shared keys) to bootstrap

the WiFi security association. We describe the benefits of this

design over other methods in Section V.

We envision the following two use cases for our work

(though it is not limited to these use cases):

1) An installer comes to someone’s home to install multiple

WiFi devices. This could be part of a security system

or an epidemiological study which involves deploying

multiple environmental sensors in the home. All the

devices that are part of the installation have been config-

ured with a pre-shared key when flashed with software

and prepared for deployment. The installer installs the

devices where they need to go and turns them on. The

installer then connects the boot device to the home’s

wireless router through Ethernet. The installer enters

customer information, such as a customer ID, into the

boot device which allows the boot device to securely

download the secret key from the company’s servers

that is connected with the newly installed devices. The

installer then asks the customer to enter in their WiFi

network name and password. The boot device sends this

information to all unassociated WiFi devices.

2) Similar to use case number one, but rather than an

installer coming to the house, a box of WiFi devices

are shipped to the customer for the customer to self-

install. The customer places the devices and downloads

an application on their smartphone or laptop. This de-

vice acts as a temporary boot device. The customer’s

device receives the shared key by either scanning a

QR code that came with the devices or using login

credentials and securely downloading the key from the

company’s servers. The customer then enters the WiFi

network name and password into the temporary boot

device, which broadcasts this information securely to all

unassociated devices.

In this paper, we identify possible attack vectors to our

protocol and show that it is resilient. In particular, we protect

against an adversary that tries to trick devices into connecting

to a rouge access point, as well as other threat vectors such as

eavesdropping, packet manipulation, and replay attacks. Our

protocol, based on only one-way transmission from the boot

to the unassociated devices without any feedback, uses erasure

coding to minimize the effects of wireless packet loss.

We evaluate our protocol in many different settings and

setups. We show that our protocol works on a variety of

wireless routers and has no effect on the network when run,

and is much faster at setting up multiple devices compared to

conventional approaches.

II. SECURE TRANSFER OF ASSOCIATION PROTOCOL

In order for a WiFi device to connect to a home’s network,

it must have the network name and password. Getting this

information to devices without keyboards and screens is time-

consuming, particularly when there are many devices to be

connected. This problem will continue to grow worse as more

IoT devices get deployed in homes as part of commercial

systems and research studies. We especially found this to be a

problem when we deployed air quality sensors in participant’s

homes as part of a pediatric asthma research study. As part

of this study, we deployed ten air quality sensors in the home

of each participating family. We found it took too long to

deploy these sensors because a large part of the time involved

connecting each sensor to the home’s wireless network.

A common approach to solve this problem for commercial

IoT devices is for a device to create its own temporary wireless

network. This allows the person setting up the IoT device to

connect to the temporary wireless network via smartphone.

They select the network name they want the device to connect

to, and enter the password, which then provides the IoT device

the information it needs to connect to the WiFi network.

Once the smartphone disconnects, the new device disables

the temporary wireless network and connects to the home

wireless router. This process works well with one new device,

but it becomes a nuisance when installing multiple devices

and increasingly untenable as the number of devices grows.

Setting up each device one at a time requires a lengthy process

for the installer and increases the chance that one device is

set up incorrectly. A long installation is undesirable because

of high labor costs, as well as the inconvenience for the

resident. If devices are being self-installed by a customer, then

a long and complicated setup process might be discouraging or

confusing. To address this problem, we create a novel approach

for securely sending the network name and password to the

unassociated wireless devices, which we call Secure TRansfer

of Association Protocol (STRAP). STRAP allows a device to

bootstrap its connection to the home wireless network with

the help of a device already connected to the network (either

through Ethernet or WiFi).

STRAP consists of three components, as shown in Figure 1:

unassociated devices that are trying to connect, the home

wireless router, and a device that helps the unassociated

devices connect, which we call the “boot”. STRAP requires

no modifications to the home wireless router. The boot runs

an application that securely transmits the network name and

password, and the unassociated WiFi devices run an applica-

tion to receive this information. The boot can be a device that

the installer brings to the home (such as a laptop, smartphone

or an Ethernet connected device) or an application a consumer

installs onto one of their devices. The boot device must be able

to inject Ethernet or WiFi frames into the network. We assume

there is a trust relationship between the boot device and the

devices trying to connect, and that both device types have been

programmed with a installation ID and shared keys used for

encryption and integrity protection. We expect this information

to be loaded onto devices when flashed with firmware and

prepared for an installation.

The major challenge we address in this paper is that there is

no direct way to send secure information to the unassociated

devices using just WiFi. We assume that all homes are using

WiFi encryption (WPA, WPA2) and as a result, unassociated

devices cannot decrypt the data without first knowing the

network name and password. To make this task more difficult,

since the boot device has an application running in userspace,

it has no concept of 802.11 frames and at the lowest level can

only send Ethernet frames. All data sent by this application

will be encapsulated in an 802.11 frame and encrypted by

the wireless adapter (if the boot device is wireless) or the

wireless router (if the boot device is wired). To get around

these obstacles, we create an approach where the boot device

encodes data and places it in the source and destination address

fields of an Ethernet frame, setting the destination address,

such that the frame is broadcast to all wireless devices.

The first problem we must overcome is how an unassociated

WiFi device can receive frames from a network it is not

associated with. To solve this problem, we use monitor mode.

Monitor mode is the mode of a wireless adapter that passes

all received 802.11 frames for a specific channel, regardless

of the intended destination and which network the frame is

part of. This allows a WiFi device to receive frames, but if

the network is encrypted, then the payload of the frame can

not be read.

This leads to our second problem, how can a device in

monitor mode receive unencrypted data? The key insight for

this problem is that a wireless router does not encrypt the

802.11 header, which includes the destination and source

addresses. This means an unassociated device in monitor mode

can read the source and destination addresses of encrypted

802.11 frames. Using this fact, we can send encoded data

in the source and destination addresses. One thing to note is

that our application level code deals with Ethernet frames and

the wireless routers encapsulates Ethernet frames into 802.11

frames. Luckily, wireless routers directly copy the Ethernet

source and destination addresses and insert them into the

source and destination addresses of the 802.11 frame [2]. This

allows data to be sent by an already connected device (either

through Ethernet or WiFi), through the home’s wireless router,

to an unassociated device in monitor mode.

The source and destination addresses make up 12 bytes in

an Ethernet and 802.11 frame. This means at most, 12 bytes

of data can be encoded into these two fields. Since an unasso-

ciated device can not transmit on a network, communication

can only be in one direction, so the source MAC address does

not need to be routable back to the boot device. However,

care must be given as to how information is encoded into

the addresses. The bytes in the MAC address have specific

meaning that need to be followed or a frame risks getting

rejected or colliding with other MAC addresses. The least

significant bit of the first byte of a MAC address specifies

whether the address is multicast (1) or unicast (0). The

second least significant bit of the first byte specifies if the

MAC address is globally unique (0) or locally administered

(1) [3]. To follow this convention, we set these bits to 10

(locally administered and unicast). By doing so, we ensure that

regardless of what data is being sent, the source and destination

addresses will not collide with commercial MAC addresses.

Even with following these MAC address rules, arbitrary

data can not be encoded directly into the destination ad-

dress. A frame that is sent with a random destination MAC

address will not be routable and will be dropped by the

wireless router. The destination address needs to have the

following two requirements. First, it needs to always be

routable, regardless of what data is being encoded. Second,

the frame needs to be transmitted on the wireless router’s

wireless interface so that the unassociated devices can receive

the frame. To address these requirements, we use a key

insight about special destination MAC addresses that have

these properties: broadcast (FF:FF:FF:FF:FF:FF), IPv4

multicast (01:00:5E:xx:xx:xx) [4], and IPv6 multicast

(33:33:xx:xx:xx:xx) [5], where the x’s of the addresses

can be replaced with a unique identifier for that multicast

group. These three addresses are always routable by the

wireless router and always cause the wireless router to send the

frame on all of its interfaces, including the wireless interface.

For our purposes, all three addresses would accomplish the

same goal of having the wireless router send the frame on

its wireless interface. However, the IPv6 multicast address

provides the most unused bytes, allowing us to encode more

information in the address. For this reason, we select the IPv6

multicast address as the destination address, which leaves us

with 10 bytes of usable data.

Since we are using the IPv6 multicast MAC address as the

destination address, it is important to understand how other

applications using this MAC address and STRAP will effect

each other. To deal with IPv6 multicast traffic from other

Payload (7 bytes)

EtherType Payload…
Destination MAC

Address

Source MAC

Address

STRAP Frame

Ethernet Frame

Header (3 bytes)

Fig. 2: The composition of a STRAP frame and how it fits in

an Ethernet frame.

applications, STRAP uses an 6 bit ID field in its header (see

the next section for details). This allows a device to uniquely

identify IPv6 multicast traffic and ignore traffic that is not

intended for it. STRAP would only affect another application

using the IPv6 multicast address if the multicast group ID

matches exactly with data STRAP is sending out. This effect

would be minimized since the destination address of STRAP

frames change between each frame because of packetization

and encryption.

Using the the whole source address and part of the IPv6

multicast address as the destination address, we can encode

10 bytes of data inside each Ethernet frame. Figure 2 shows

how a STRAP frame fits inside of an Ethernet frame. We

recognize that the ability for an already connected device to

send arbitrary data to unassociated wireless devices could have

many different applications, such as emergency notifications,

but for this paper we limit the usage to sending the network

name and password. In the following sections, we outline the

design of STRAP.

A. Header

Using the source address and IPv6 destination address as

described above, there are 10 bytes that are available to encode

data. We do not expect a network name and password to fit

within 10 bytes, so we design STRAP to support fragmented

data. We create a header format as shown in Figure 3. We

use the first 3 bytes of the source address as a header for our

protocol and the rest of the bytes as the payload. The first 6

bits are used as a unique ID to identify the install. Since each

unassociated device will be in monitor mode, listening to all

wireless communication on a certain channel, it is important

that the device can filter out data that is unintended for it.

Bits 6 and 7 set the MAC address to be locally administered

and unicast, as mentioned above. Bit 8 is a flag used to

distinguish between different groups of transmissions. The flag

is alternated between one and zero, allowing a device to know

when a group of transmissions has ended and another one has

started. Bit 9 and 10 are used as an index into a predetermined

array for how much erasure coding has been added. This is

explained more in Section II-C. Bit 11 through 16 give the

total number of packets being sent. With STRAP, we make

sure there is always an even number of packets being sent, so

the total number of packets must be shifted left by one. The

 = unique identifier for deployment

 = flag used to distinguish between groups of transmissions

 = Index for the amount of redundancy

 = total packets being sent (always even so shift left by 1)

 = sequence number

Fig. 3: STRAP header format

last 7 bits (bit 17 to 23) represent the sequence number of

that packet. The rest of the 7 bytes are used as the payload

to send the encrypted network name and password. One thing

to note is that only 126 packets can be sent in one round of

transmissions, due to the size of the total field in the header.

This allows for 882 bytes of data to be transferred. This is not

a problem for transmitting the network name and password,

as the maximum size of a network name is 32 bytes and the

maximum size of a password is 64 bytes [6]. If it were to

become a problem, the information can be broken up into

multiple exchanges and the data can still be transmitted.

B. Encryption and Integrity Protection

To ensure that the network name and password are pro-

tected, we use AES-128 with CBC [7] to encrypt the data. An

initialization vector (IV) is generated and used to encrypt the

data and is sent along with the encrypted payload. A “global”

sequence number is also added to the payload. We use the term

“global” to distinguish between the sequence number that is

part of the header described in Figure 3. We use the current

time in the form of an epoch timestamp as our global sequence

number, since it is monotonic. Since the global sequence

number is monotonic, it protects against replay attacks. A

message authentication code is created based on the encrypted

data and global sequence number. We use SHA256 as our hash

for creating the message authentication code. This is added to

the payload.

C. Erasure Coding

Erasure coding is the process of adding redundant data to

the original data so that if there is data loss, the message

can still be recovered. Data loss is an important consideration

for STRAP. Since we are using the IPv6 multicast destination

address, there are no link layer acknowledgements so our

frames do not benefit from link layer retries. We use Zfec [8]

as our erasure coding algorithm. Zfec has two parameters, k

and m. m is the total amount of blocks that will be produced

and k is the number of blocks needed to construct the original

message. Adjusting m and k produces different size blocks

of data. We select m such that the block size is equal to our

payload size, 7 bytes. In order to decode the data from Zfec,

the receiver must know k and m. m is included in the packet

header as the total number of packets. In order to save bits,

we do not want to send k directly. Instead, we use an array of

predetermined values and send an index into that array. The

values in this array represent the maximum loss tolerated while

still being able to decode the message. For example, the array

[.2, .4, .6, .8] would represent 20% loss, 40% loss, 60% loss,

and 80% loss. If the boot device wants to support 40% loss,

it encodes the the data using Zfec such that k = .4m and set

bits 9 and 10 of each header to 01. When a receiver receives a

packet, it indexes into the array using bits 9 and 10, uses this

value to calculate k based on m, and decodes the message.

We design STRAP to support multiple erasure coding rates so

that it can adapt to the environment it is running in. It allows

STRAP to start with minimal erasure coding and increase if

needed.

D. Running STRAP

Figure 4 shows the general flow of data through STRAP. To

start the process of transferring the association information,

the installer enters their WiFi network name and password

into an interface on the boot device. The network name and

password that are entered are first encrypted using the pre-

shared encryption key and randomly generated IV. A message

authentication code is created using a pre-shared integrity key,

encrypted data, and a global sequence number. The IV, global

sequence number, encrypted data, and message authentication

code are concatenated together and run through the erasure

coding algorithm. Finally, the data is split into packets, header

bytes are added, and sent as empty Ethernet frames with only

the source and destination addresses set. To ensure that all

devices receive the data, the boot device will continue to repeat

this procedure, toggling the send flag, updating the global

sequence number, and creating a new IV.

Each of the unassociated wireless devices running STRAP

enter into monitor mode and scan through all the channels,

listening for frames from the boot device (using the ID

segment of the header to filter out unwanted packets). If a

device receives frames with different flag values, it knows

a new transmission has started and discards the frames with

the old flag. Once a device has received enough frames to

complete the message, it authenticates the message (using the

MAC and global sequence number), decrypts the message, and

connects to the home wireless router. After a device connects

to the network, it performs the necessary tasks to notify the

boot device that it has connected, such as notifying a server

that the boot device is connected to. As time goes on, the

boot increases the amount of erasure coding it adds to the

data. This helps to catch any devices that have high loss and

are unable to decode the data. Once all of the expected devices

have connected, the person installing the devices can stop the

boot from sending the data. If the wireless network’s name

changes, STRAP can be rerun with the new network name

and password. If a STRAP device is unable to connect to

the programmed network, it automatically starts listening for

STRAP frames.

E. Threat Model and Security Analysis

With STRAP, we assume that there is a trust relationship

between the boot and devices trying to connect, and that two

cryptographic keys have been loaded onto the unassociated

devices being installed, before putting the devices in a person’s

home. One of the keys is used for encryption and the other is

used for integrity protection. These keys have a similar role

to the network name and password of the home’s wireless

network (to secure communication), but with the important

difference that it does not have to be manually entered by a

user or installer. The key is controlled by the company making

the devices. The key could be loaded onto the devices when the

devices are being flashed with firmware. The boot device can

be preconfigured with the shared keys as well, or an installer

can load the shared keys onto the boot device, for example,

through a QR code or logging into an application.

Our adversary model includes both active and passive

attackers. An adversary can eavesdrop on the conversation and

replay previously captured frames or inject new frames, but has

no physical access to the devices. Denial of service attacks,

such as jamming, are beyond the scope of this paper. The

goal of an adversary is to gain access to the home’s wireless

network or trick the connecting devices into connecting to a

rouge access point. This could potentially give the adversary

access to data the device produces.

We now outline some of the possible attack vectors. The

transmitted data is encrypted using a shared secret, that only

the boot and devices trying to connect know, so the adversary

will be unable to decrypt the data. Since the same information

will be transmitted multiple times, we update the IV between

each round of transmissions to achieve semantic security.

This ensures that an adversary listening to multiple rounds

of transmissions will not be able to learn anything about the

network name and password. The adversary cannot imitate the

boot device, tricking the devices into connecting to a rouge

access point, because it does not know the secret keys, so any

data it creates and sends out will not pass the integrity check

at the devices trying to connect. Assuming a participant has

changed their network name and an adversary had captured

the frames from this protocol when the participant was using

the old network name, the adversary could set up an access

point with the old network name and replay the frames it

had captured. However, the connecting devices will detect this

attack because of the global sequence number. The adversary

is unable to change the global sequence number (or any of

the encrypted data) without the devices detecting it, due to

the message authentication code.

III. IMPLEMENTATION

We implement both the STRAP transmitter and receiver

on Raspberry Pi 3s using Python. We have made the source

code for STRAP publicly available [9]. For the STRAP

receiver, we use the MediaTek MT7601 (Ralink 7601) wireless

adapter which supports monitor mode. We connect the STRAP

transmitter (the ”boot” device) through Ethernet into the home

access point. When the device running the STRAP receiver

Fig. 4: Flow of data through STRAP

boots up, it looks for any previously known wireless network

to connect to. If it is unable to find a network, it starts the

STRAP receiver. The receiver randomly scans through the

WiFi channels listening for STRAP messages, waiting one

second on each channel. If the receiver detects a STRAP

message, then it stops on that channel until it receives all of

the frames necessary to decode the message. If the STRAP

receiver is unable to receive any STRAP messages, it tries

again to connect to any previously known networks. This

process is continued until the device is able to connect to

a network.

The STRAP transmitter is started by an installer entering the

network name and password into a web page running locally

on the boot device. The Python script uses the Scapy Python

library [10] to inject Ethernet frames into the network. The

STRAP transmitter continuously sends out frames every 50

ms until all of the expected devices have connected and the

installer stops the boot device.

IV. EVALUATION

We integrate STRAP with two air quality sensors, the Dylos

DC1100 [11] and Plantower PMS3003 [12]. Both of these sen-

sors are commercially available that measure the concentration

of airborne particulate matter. STRAP has been used in homes

to deploy these air quality sensors, with multiple sensors per

home.

We evaluate four aspects of STRAP: hardware support, loss

characteristics seen while using STRAP, effect of STRAP

on normal network operation, and ease of use of STRAP

compared to the commonly used temporary network solution.

A. Wireless Router Support

We test STRAP using five wireless routers in four locations

to ensure that our protocol is supported across a broad range

of brands. We test STRAP on an Apple Airport Extreme

(4th generation), Google Fiber Network Box GFRG200, Net-

gear Nighthawk R7000, Linksys WRT3200ACM, and TP-

Link WR940N. Of the five wireless routers we tested, all

of them supported our protocol. Though we are overloading

the purpose of the source and destination addresses of the

0.5m3m 6m
70

75

80

85

90

95

100

Pe
rc
en

t R
ec
ei
ve

d

Setup 1

0.5m3m 6m

Setup 2

0.5m3m 6m
Distance

Setup 3

0.5m3m 6m

Setup 4

0.5m3m 6m

Setup 5

Fig. 5: Percent of frames received in different experimental

setups (different wireless routers, different locations) vs. path

length.

Ethernet frame, we encode the data so that the source address

should not collide with any other MAC addresses by setting

the locally administered bit and the destination address uses

to the standard MAC address for IPv6. As a result, STRAP

works on all wireless routers we have tested.

B. Loss Characteristics

We test STRAP at three different distances from a wireless

router (less than .5 m, 3 m, and 6 m) to understand the loss

patterns and help inform us how much erasure coding we need.

The loss is important to understand since the 802.11 frames

that are sent are multicast and do not benefit from link layer

retransmissions. We use the same five wireless routers in the

same four locations from the previous experiment. We run

STRAP, measuring the number of packets that were received

by a device trying to connect to the network. Figure 5 shows

the results of these experiments. Each graph shows the results

from one of the five access point setups mentioned in the

previous section. A box plot is shown for each of the three

transmission distances. The variations between the five setups

is likely to be because of varying environmental conditions for

TABLE I: Network speed during normal network traffic and

while running STRAP.

Throughput (Mbps)

Average Std

Normal Network 314.6 27.2

Using STRAP 335.2 9.6

TABLE II: Number of steps to configure devices using the

temporary network method compared to STRAP.

Temporary Network Method STRAP

Open smartphone WiFi settings
Open webpage or app (hosted
on boot device)

Find name of device’s temporary net-
work and connect

Enter network name and pass-
word

Open application or website to inter-
face with device

Find network name from list and
enter password

Repeat steps for each device

the same path length. The results show that the STRAP works

well even from 6 m, with the lowest percent received being

above 70%. This amount of loss can be overcome by using

erasure coding.

C. Network Overhead

We measure the effect of STRAP on the other network

activity. We do this by running iperf under normal network

operation and while running STRAP. We run iperf on two

laptops, one connected wirelessly and the other connected

through Ethernet. Data is sent from the Ethernet connected

laptop to the wirelessly connected laptop. Table I shows the

results of these experiments. Although the average throughput

while using STRAP was slightly higher, a two-sample t-test

shows no statistically significant difference (at α = 0.05)

between iperf throughput using STRAP vs. not using it.

In other words, use of STRAP does not affect the network’s

data rate performance.

D. Speed

We evaluate how long it takes a STRAP receiver to connect

to a wireless router. The time it takes a STRAP receiver to re-

ceive the network name and password depends on how quickly

the receiver is able to find the channel of the wireless router

the boot device is connected to and capture enough STRAP

frames to decode the network name and password. Assuming

there are eleven WiFi channels for the STRAP receiver to

scan through, the boot device is already transmitting, and the

STRAP receiver pauses on each channel for one second (see

Section III), it will take at least 1 second and at most 11

seconds.

The time it takes to transmit all of the STRAP frames

depends on how large the combined network name and pass-

word are and the amount of erasure coding used. We look

at the best and worst case scenario for STRAP. In the best

case, assuming a small network name and password and no

loss on the network, it would take only 11 out of 14 frames

to be received for the receiver to get the network name and

password. With STRAP, a frame is transmitted every 50 ms,

so it would take 550 ms to receive the first 11 frames.

In the worst case, it would take 120 frames to be sent,

the maximum number of frames STRAP supports, and only

24 frames received (80% loss). Note, to send the maximum

number of frames, erasure coding would need to be set to

80% loss and the combination of network name and password

would need to be 111 characters long! As stated before,

STRAP transmits frames every 50 ms, so it would take 6

seconds to receive all the necessary frames. However, for a

STRAP receiver to catch at least one full transfer of those

frames, the receiver needs to be on that channel for twice

that time, 12 seconds. Combining the best and worst cases

with the time it takes the scan the WiFi channels, STRAP

can range from 1.55 seconds to 23 seconds. This time stays

constant regardless of how many devices are being connected.

The time taken for other approaches, such as the temporary

access point method, increases with the number of devices that

a person is connecting.

Next, we compare the number of steps required to set up a

device using the standard method of having the device become

a temporary network compared to using STRAP. The steps are

shown in Table II. Using the temporary network method, four

steps are needed for each device that is set up. STRAP only

requires two steps in total regardless of the number of devices

that are being set up.

Based on these evaluations, we conclude that STRAP will

work with a home’s wireless router, work from a variety of

distances, has no effect on a home’s network while running,

and will make it easier to install devices than traditional

methods.

V. ALTERNATIVE APPROACHES AND RELATED WORK

The deployment scenario we explore is that an installer from

a company providing an IoT system will come to a home

with many devices needed to be installed. Alternatively, the

company may simply mail a set of devices with instructions,

and the user serves as the installer.

Given that we assume there is a trust relationship between

the person installing the devices and the devices themselves,

and that each device has to be programmed with a shared

key, it would make sense to just program the devices with

the home’s WiFi network name and password instead of the

shared key before installing the devices in the home. How-

ever, this approach has drawbacks. First, a resident might be

uncomfortable giving out their WiFi password, and an installer

might not want to be responsible for storing it. Second, there

can be a high rate of errors when communicating the network

name and password in part due to default long and difficult

passwords on home wireless routers. These passwords may be

challenging to relay accurately (e.g., mistaking a capital letter

“o”). An incorrect network name or password is only detected

after installing the devices. In this case, the installer would

need to reprogram the devices with the correct information.

Depending on the device, this might not be possible to do in

a home or it might take a long time.

Another solution would be to use the boot device as an

access point itself. Devices trying to connect could be con-

figured to automatically connect to the boot device’s network

and then the boot device could share the network name and

password with the devices. However, this approach requires

that the boot device can become an access point which limits

the types of hardware supported. In a self-installation setting

where a customer is using their own device as the boot device,

this might not be possible.

One possible solution to the WiFi bootstrapping problem

is to use an alternative WiFi security model. WPA Enterprise

is an alternative to the traditional residential security method,

WPA2. Instead of providing a network name and password, a

device connects to the access point and provides a username

and password. A RADIUS authentication server authenticates

the user allowing the device to connect to the network or

rejects the device, disconnecting it from the network. This

requires the device that is trying to connect to have three pieces

of information: network name, username, and password. A

home could create a username and password for the devices

that are going to be installed, alleviating the problem of having

to program the devices with this information. However, the

network name would still need to be programmed in and

if the network name changes, the devices would have to be

reprogrammed again. Another alternative would be to set up

a wireless network with no security (open) and instead use a

captive portal to authenticate users. This solves the problem

of having to program a device with a password, though it

creates new problems with not having the transmitted data

encrypted. Both of these approaches are not features supported

by standard consumer wireless routers and would require

advance configuration to setup. Expecting a home to support

them in order to install devices in the home is not acceptable.

STRAP works without any modifications to the home wireless

router.

Another way to circumvent this problem is to not depend

on a home’s WiFi at all and instead use cellular connectivity.

However, using cellular can be cost prohibitive and might not

be an option for some device types or deployments. For this

reason, we focus on improving WiFi bootstrapping.

Many approaches exist to bootstrap the wireless connectiv-

ity of a small device (one without a screen or keyboard) to

an wireless router. We outline some of the approaches used

by current IoT devices. A common approach is for the IoT

device to create a temporary access point, allowing the user

to connect and program the network name and password onto

the device. This approach is taken by many companies, such as

Amazon for their Echo devices [13], and is a standard feature

for many WiFi SoC, such as the Espressif ESP8266 [14]

and TI CC3200 [15]. Typically, when a device first boots up

and is unable to connect to a network, it enters into access

point mode. The user is then prompted to connect to the

temporary network, usually through a smartphone app. Once

connected, the user enters the network name and password,

usually through an app, which programs the device. The

device switches from access point mode into client mode and

connects to the network. While this approach works well for a

few devices, it does not scale when dealing with many devices.

Having to enter in a network name and password quickly

becomes cumbersome and error-prone, especially when de-

ploying multiple devices in a single installation. This approach

also requires some kind of smartphone application to guide a

user through the setup and enter the WiFi credentials into.

Another approach would be to use WiFi Protected Setup

(WPS) [16]. The promise of WPS is to simplify connecting

a new device to a WiFi network. This allows a user to have

a secure network but not have to enter a password into the

device. WPS has two modes: PIN and push button. With PIN

mode, a person enters a PIN into the device that wants to

connect. The PIN comes from the wireless router, usually

on the sticker on the bottom of the wireless router. With

the second mode, push button, a button is pushed on the

wireless router and on the device that wants to connect.

Information is exchanged between the two entities, allowing

the device to connect to the network. While WPS seems to

address this bootstrapping problem, there are drawbacks with

the implementation. First, the PIN mode of WPS suffers from

online and offline brute force attacks [17]. As a result, it is

recommend by security experts to disable WPS [18]. Second,

WPS is not part of the WiFi specification, and as a result, not

all wireless routers support it. Since both the home’s wireless

router and devices trying to connect must support WPS to

work, not having full support makes this approach infeasible.

STRAP does not depend on a feature of the wireless router to

work and instead uses basic Ethernet frames.

Another option is to use an out-of-band channel for commu-

nicating the network name and password. Some commercial

devices, such as Google Home, use Bluetooth for the pur-

pose of receiving WiFi association information [19]. Other

commercial devices, such as the Amazon Dash Button, use

“ultrasound” to transmit data between a smartphone and de-

vice [20]. With Bluetooth, a person is only able to program one

device at a time. With both methods, these approaches require

extra hardware and are tightly coupled with a smartphone

application. Our approach does not require any extra hardware

on the device or a smartphone application.

STRAP overloads the purpose of the source and destination

addresses of the Ethernet and 802.11 frames to encode data.

Similar approaches are used for covert channels. WiFi covert

channels mainly focus on two main methods for convey-

ing information, timing and the 802.11 header. WiFi timing

covert channels encode information in the timing between

frames [21] [22]. Covert channels using the 802.11 header

overload the purpose of a field to transmit data, such as STRAP

does with the source and destination addresses. Such work

includes modifying the sequence control and fragment control

fields of the 802.11 MAC header [23] or rate switching [24].

Other covert channels focus on modifying IP and TCP fields

that are not typically used or not checked by devices [25].

VI. CONCLUSION

In this paper, we have discussed the motivation, design,

implementation, and evaluation of STRAP. STRAP allows for

multiple devices bootstrap connectivity to a home’s wireless

network at one time. It is a novel design that encodes data

into the source and destination addresses of Ethernet frames.

Our evaluation shows that STRAP works with a variety of

routers and has no effect on the network when running. We

also show that STRAP is much faster compared to conven-

tional approaches to connecting devices to a home’s wireless

network.

ACKNOWLEDGMENTS

Research reported in this publication was supported by

NIBIB of the US NIH under award number 1U54EB021973-

01.

REFERENCES

[1] A. E. Guttmacher, S. Hirschfeld, and F. S. Collins, “The national
childrens studya proposed plan,” The New England Journal of Medicine,
vol. 369, no. 20, p. 1873, 2013.

[2] WARP: Wireless Open-Access Research Platform. (2014)
Ethernet encapsulation and de-encapsulation. [Online]. Available:
https://bit.ly/2rvJJ9X

[3] I. S. Association. (2011) Standard group mac
addresses: A tutorial guide. [Online]. Available:
http://standards.ieee.org/develop/regauth/tut/macgrp.pdf

[4] S. Deering, “Host Extensions for IP Multicasting,” Internet Requests for
Comments, RFC Editor, RFC 1112, August 1989. [Online]. Available:
https://tools.ietf.org/html/rfc1112

[5] M. Crawford, “Transmission of IPv6 Packets over Ethernet Networks,”
Internet Requests for Comments, RFC Editor, RFC 2464, December
1998. [Online]. Available: https://tools.ietf.org/html/rfc2464

[6] “Ieee std 802.11-2012 (revision of ieee std 802.11-2007),” pp. 1–2793,
March 2012.

[7] U. S. N. I. of Standards and T. (NIST). (2001) Announcing
the advanced encryption standard (aes). [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

[8] L. Rizzo, “Effective erasure codes for reliable computer communication
protocols,” SIGCOMM Comput. Commun. Rev., vol. 27, no. 2, pp. 24–
36, Apr. 1997.

[9] P. Lundrigan. (2017) Unassociated transfer. [Online]. Available:
https://github.com/philipbl/unassociated transfer

[10] secdev. (2018) Scapy. [Online]. Available:
http://www.secdev.org/projects/scapy/

[11] Dylos, “Dc1100 air quality monitor,” 2018. [Online]. Available:
http://www.dylosproducts.com/ornodcairqum.html

[12] Plantower. (2018) Pms 3003-pm2.5-plantower technology. [Online].
Available: http://www.plantower.com/en/content/?107.html

[13] Amazon. (2018) Connect your echo device to wi-fi. [Online]. Available:
https://amzn.to/2m6Cohx

[14] Espressif. (2018) Esp8266 overview. [Online]. Available:
https://www.espressif.com/en/products/hardware/esp8266ex/overview

[15] T. Instruments. (2018) Cc3100/cc3200 sim-
plelink wi-fi internet-on-a-chip. [Online]. Available:
http://www.ti.com/lit/ug/swru368a/swru368a.pdf

[16] W.-F. Alliance, “Wi-Fi Protected Setup,”
https://www.wi-fi.org/discover-wi-fi/wi-fi-protected-setup, 2017.

[17] S. Viehbck. (2011) Brute forcing wi-fi protected setup. [Online]. Avail-
able: https://sviehb.files.wordpress.com/2011/12/viehboeck wps.pdf

[18] J. Allar. (2012) Vulnerability note vu#723755 - wifi protected
setup (wps) pin brute force vulnerability. [Online]. Available:
https://www.kb.cert.org/vuls/id/723755

[19] Google. (2017) Set up your google home device. [Online]. Available:
https://bit.ly/2KLc4Sr

[20] M. Gibbs. (2015) Hacking amazon’s dash button. [Online]. Available:
https://bit.ly/2jIZKG7

[21] R. Holloway and R. Beyah, “Covert dcf: A dcf-based covert timing chan-
nel in 802.11 networks,” in 2011 IEEE Eighth International Conference

on Mobile Ad-Hoc and Sensor Systems, Oct 2011, pp. 570–579.
[22] R. Archibald and D. Ghosal, “A covert timing channel based on fountain

codes,” in 2012 IEEE 11th International Conference on Trust, Security

and Privacy in Computing and Communications, June 2012, pp. 970–
977.

[23] L. Frikha, Z. Trabelsi, and W. El-Hajj, “Implementation of a covert
channel in the 802.11 header,” in 2008 International Wireless Commu-

nications and Mobile Computing Conference, Aug 2008, pp. 594–599.
[24] T. E. Calhoun, X. Cao, Y. Li, and R. Beyah, “An 802.11

mac layer covert channel,” Wireless Communications and Mobile

Computing, vol. 12, no. 5, pp. 393–405, 2012. [Online]. Available:
http://dx.doi.org/10.1002/wcm.969

[25] S. Zander, G. Armitage, and P. Branch, “A survey of covert channels
and countermeasures in computer network protocols,” IEEE Communi-

cations Surveys Tutorials, vol. 9, no. 3, pp. 44–57, Third 2007.

https://bit.ly/2rvJJ9X
http://standards.ieee.org/develop/regauth/tut/macgrp.pdf
https://tools.ietf.org/html/rfc1112
https://tools.ietf.org/html/rfc2464
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://github.com/philipbl/unassociated_transfer
http://www.secdev.org/projects/scapy/
http://www.dylosproducts.com/ornodcairqum.html
http://www.plantower.com/en/content/?107.html
https://amzn.to/2m6Cohx
https://www.espressif.com/en/products/hardware/esp8266ex/overview
http://www.ti.com/lit/ug/swru368a/swru368a.pdf
https://www.wi-fi.org/discover-wi-fi/wi-fi-protected-setup
https://sviehb.files.wordpress.com/2011/12/viehboeck_wps.pdf
https://www.kb.cert.org/vuls/id/723755
https://bit.ly/2KLc4Sr
https://bit.ly/2jIZKG7
http://dx.doi.org/10.1002/wcm.969

	Introduction
	Secure TRansfer of Association Protocol
	Header
	Encryption and Integrity Protection
	Erasure Coding
	Running STRAP
	Threat Model and Security Analysis

	Implementation
	Evaluation
	Wireless Router Support
	Loss Characteristics
	Network Overhead
	Speed

	Alternative Approaches and Related Work
	Conclusion
	References

