
Orchestrating the Data-plane of Virtual LTE Core
Networks

Rajesh Mahindra∗, Arijit Banerjee†, Karthik Sundaresan‡,
Sneha Kasera§, Jacobus Van Der Merwe § and Sampath Rangarajan‡

∗Uber Inc.
†Federated Wireless Inc.

‡NEC Laboratories America, Inc.
§University of Utah

ABSTRACT

Growing demand for data and increasing number of devices

are drastically changing the scale of operation in mobile

networks. Future services and business models require efficient

provisioning with enhanced traffic management. It is hard to

meet these requirements on today’s mobile networks that are

deployed over specialized hardware. While operators are keen

to adopt NFV (Network Function Virtualization) to virtualize

their networks, virtualized mobile network deployments face

a few technical barriers. To address these challenges, we

design SCOPE that effectively applies concepts from SDN and

distributed systems to realize NFV-based LTE core networks.

Using centralized allocation, SCOPE effectively manages the

resources across multiple telecom data-centers in a way to

meet the traffic requirements. To enforce the computed al-

locations, SCOPE includes flexible and efficient mechanisms

to configure the data-plane. With full compliance to 3GPP-

based protocols, SCOPE ensures faster and cost-effective de-

ployments. The efficacy of SCOPE is shown using a prototype

implementation and large-scale simulations.

I. INTRODUCTION

The rise of cloud computing will cause data traffic per
smartphone to grow to 5GB in 2020 [1]. 25 billion connected
devices are predicted by 2020 [2]. The coupled effect of the
growth of devices and data will require mobile networks to
operate at scales well beyond the capabilities of the current ar-
chitectures. Additionally, a saturated voice market and limited
long-term growth from data access requires mobile operators
to expand to newer network-as-a-service business models.
Enabling such models requires additional capabilities for rapid
provisioning of network resources of both the radio access
and the core network. In the context of LTE core networks,
current specialized hardware based deployments will fail to
cost-effectively meet these requirements [3].

Motivated by IT Clouds, such as Amazon Web Services
that can provide high reliability at lower costs, operators are
considering NFV [4] as the first step towards evolving their
networks. The network functions would be deployed over a

This work was done when Rajesh was an employee at NEC and Arijit was
an intern at NEC.

platform based on general-purpose hardware, enabling fast and
agile provisioning. While operators do realize the benefits of
NFV, one of the primary reasons for its slow adoption in LTE
core networks has been due to the the lack of a comprehensive
management framework. Recent works have proposed scalable
NFV-based design for LTE control plane management [5],
[6]. In this paper, we focus on the data plane management
as data-plane is responsible for carrying all user traffic, and
its efficiency directly impact user experience and operator
revenue.

To bring NFV-based LTE deployments closer to reality,
we design and implement SCOPE: A system that efficiently
manages the compute and network resources of LTE networks
across services; while providing primitives to perform policy-
driven traffic management. SCOPE strives to meet the traffic
requirements for both, delay-sensitive services and elastic

services. Based on current traffic demand and resource avail-
ability, SCOPE allocates the network resources to each service
acoss DCs to reduce provisioning costs. SCOPE’s design also
includes flexible and efficient mechanisms to configure the
data-plane, including both the standardized LTE-gateways and
middleboxes.
Challenges: To support resource allocation at scale, SCOPE
needs to devise algorithms that are light-weight and practical.
Although the requirements of SCOPE seem similar to WAN
resource management systems [7], [8], there are multiple chal-
lenges specific to LTE networks. First, such systems primarily
consider the constraints of inter-DC bandwidth. However, with
LTE networks consisting of several middleboxes, SCOPE’s re-
source allocation algorithm is jointly constrainted by inter-DC
bandwidth as well as compute resources. Second, the presence
of service-chaining in LTE, further complicates the problem.
SCOPE employs overlay routing on the data-plane to ensure
that the traffic of each service is routed across the appropriate
middleboxes at the DCs according to the allocation computed
for that service. However, to ensure a practical design for
the data-plane, SCOPE need to solve a harder problem, where
the compute resources to all the flows belonging to a service
must be assigned along the same path.Finally, unlike regular
middleboxes that employ IP-routing, the standardized LTE-
gateways employ 3GPP-defined standard IP-tunnels to route
user traffic across the gateways. The devices are statically

Figure 1: LTE Core Network Architecture.

assigned to the gateways, making it challenging for SCOPE to
dynamically enforce the allocation for services across the data-
plane. To ensure that SCOPE is readily deployable in today’s
LTE networks, it is critical to design SCOPE to deal with
the well defined standard interfaces and protocols, and the
persistent sessions of the LTE-gateways.

Contributions: SCOPE systematically overcomes the afore-
mentioned challenges with the following contributions: First,
SCOPE includes efficient algorithms to ensure a scalable central
controller, that allocates resources of DCs across multiple
services. While being computationally light-weight, the al-
gorithms meet the constraints of compute and bandwidth
resources. SCOPE is efficient in minimizing the end-end delays
for delay-sensitive services, while providing max-min through-
put fairness across the elastic services. Second, SCOPE employs
a two-step resource allocation solution. The delay-sensitive
services are handled first, where given the hardness of the
problem, SCOPE compromises slighlty on the efficiency of VM
usage to yield latencies that are very close to a genie lower
bound. Then, it distributes the elastic services to efficiently
utilize the unallocated bandwidth and compute resources.
Third, SCOPE re-architects the LTE-gateways by splitting the
control and forwarding planes to enable efficient offloading
of LTE-gateway functions of selected services across DCs.
We implement SCOPE on an end-to-end LTE testbed using
OpenEPC [9] and the Click modular router [10]. Our prototype
implementation on an LTE standards-compliant testbed shows
the feasibility of SCOPE to work with existing protocols, mak-
ing it readily deployable in today’s networks. Our implementa-
tion is also supplemented with a large-scale systems simulator.
Our SCOPE prototype illustrates how a practical data plane im-
plementation involving standard-compliant LTE gateways and
Click router improves peformance of interactive services with
varying demands by intelligent resource allocation and flow
routing. In a particular instantiation, SCOPE reduces the 99th
percentile delay for interactive HTTP flows from 250msecs to
80msecs. We also show that SCOPE implementation results in
better resource (VM) utilization, and improves throughput of
elastic services.

II. BACKGROUND: LTE CORE NETWORKS

The LTE network consists of the Radio Access Network
(RAN) and the Evolved Packet Core (EPC) as shown in
Figure 1. The RAN includes eNodeBs (or basestations) that
serve the user devices (UEs), and the EPC consists of both the

Figure 2: Future Core Network deployments with SCOPE.

control-plane entities that manage the devices and data-plane
entities that route the data traffic. While the main control-plane
element is the MME (Mobility Management Entity), the data-
plane functions comprise of both standardized LTE-gateways
and generic middleboxes:
LTE-Gateways: The packets from the eNodeB are routed
through two gateways, namely the Serving Gateway (SGW)
and the Packet Data Network Gateway (PGW). The SGW’s
primary function is to maintain the data path as the UE moves
across a set of eNodeBs. The PGW is the Internet gateway,
it both assigns an IP address to the UE and routes its data
traffic to and from the external networks. The data traffic of
each UE is carried over a bearer, a logical transport channel
between the UE and the PGW. In the core network, the user
traffic belonging to a data bearer is carried over a tunnel using
the GTP-U [11] headers.
Middlebox Functions: The LTE core network also consists
of several middleboxes to perform various functions, e.g.,
Firewalls, Proxies, etc. Unlike the SGW/PGW,operators are
free to deploy custom protocols to route IP traffic flows across
the middleboxes. Since not all flows will require service from
the same set of middleboxes, routing has to ensure that the
flows are sent to the appropriate middleboxes in the correct
order or a Service-Chain. Figure 1 depicts 2 service-chains, the
blue flow is composed of a video transcoder and a firewall,
while the red flow is composed of a parental controller, a video
transcoder, and an intrusion detection service.
Key Differences: Middleboxes [12] only hold state for active
flows or connections. However, the SGW and PGW persist-
ently hold state for a UE. Once a UE registers with the
network, the LTE mobility protocols ensure that the UE is
managed by the same SGW and PGW as the UE cycles
between Idle and Active modes. Hence, the traffic flows of
a UE are always routed through the same SGW and PGW.

III. SCOPE: OVERVIEW & ARCHITECTURE

SCOPE Deployment: The goal of SCOPE is to scale the
LTE core network deployments to enable future services by
leveraging concepts from NFV, SDN and distributed systems.
SCOPE carefully instruments these concepts within the con-
straints posed by LTE networks through the design of efficient
data-plane management algorithms. SCOPE is applicable to fu-
ture LTE deployments with multiple DCs as shown in Figure 2;
such that each eNodeB is directly connected to the closest

DC in physical proximity, referred to as the local DC for that
eNodeB. To achieve the goals of improved network utilization
and traffic QoS, SCOPE employs a centralized controller,
with the global-view of the traffic demands and the network
topology. The controller periodically assigns both the compute
(VM) resources and the inter-DC bandwidth resources across
traffic flows. The basic unit of compute resource allocated
by SCOPE is a VM. Each DC is assumed to have a fixed
number of physical servers, provisioned based on the long-
term average traffic statistics. A DC can host a given number
of VMs; such that each VM is allocated the same amount
of CPU and memory. Each DC is inter-connected with other
neighboring DCs using either leased or dedicated links. There
may be multiple links between a given pair of DCs, but SCOPE
treats them as a single logical link with capacity equal to the
aggregate capacity of the individual links.
Traffic Types: To ensure scalability, the traffic is represented
in the units of a service: group of flows belonging to an entity
with the same: (i) QoS traffic type and (ii) Service chain.
Driven by typical mobile application traffic characteristics,
SCOPE supports 2 traffic types: Interactive and Elastic. Since
interactive flows are delay-sensitive, SCOPE strives to minimize
their end-to-end delays, while meeting their traffic demand.
In the case of elastic flows, SCOPE strives to maximize the
aggregate throughput while striving to be fair. SCOPE keeps
track of a moving average of the traffic demand for each
service, originating from eNodeBs at every DC. In addition, at
every DC, SCOPE periodically measures the average delay from
the DC to the end-server for flows belonging to interactive
services. The aggregate delay measurements per service are
maintained by SCOPE. Using these measurements, SCOPE can
effectively reduce the end-end delays for interactive services,
rather than just the delay within the core networks, which may
not be representative of the end-end delays.
Inter-DC Offloading: While trying to meet the requirements
of the services, the traffic from a subset of services that
originate from the eNodeBs connected to their local DC,
may be egressed through a neighboring or remote DC, as
shown in Figure 3. These services may be either partially
or fully processed at the remote DC. For instance, service#1
in Figure 3, which has a service-chain consisting of the
functions S,P (SGW,PGW) and the network functions V ,F
and T , is routed locally through DC1 to its end server(s).
However, service#2 is partially processed and egressed through
the remote DC3, while service#3 is completely processed
and egressed through the remote DC2. Intuitively, it may
seem best to allocate all the VM resources for a particular
service at the local DC. However, SCOPE selectively offloads

processing and egresses certain services through remote DCs
for the following reasons: (i) By striving to offload selective
flows, either for partial or complete processing of functions
in their service-chains, to remote DCs, SCOPE can perform
fine-grained multiplexing of compute resources across DCs.
(ii) There are a few reasons why routing certain flows from
the egress point of their local DC may not be optimal since:
(a) Well-known triangle inequality violations in interdomain

Figure 3: Service Flow allocation in SCOPE.

routing, (b) In the context of certain IoT and MEC(Mobile
Edge Computing) applications, the operator hosts the servers
(e.g., transcoding, analytics etc.) for the services within the
network. Such servers may not be deployed in all the DCs
for all the services, and (c) Several content-providers and
enterprises have a relatively centralized presence. The servers
or cloud resources for the traffic of such entities may have
better peering with a subset of the operator’s DCs.
A1. Architecting Flexible LTE-Gateways: To solve the chal-
lenges pertaining to enforcing the resource allocations across
the data-plane, specifically for the LTE-gateways, SCOPE re-
architects the LTE-gateway implementations. It is important
for SCOPE to have the ability to re-assign flows of services

across these gateways. There are 2 key challenges to enable
such flexibility: Firstly, the re-assignment of flows across
LTE-gateways has to happen at the level of UEs since UEs
are managed by a specific SGW and PGW. Moreover, the
assignment of UEs is performed prior to the initiation of the
application traffic. Hence, it is not possible to know the service

type for the flow(s) that will be initiated by a UE. Secondly,
it is necessary to ensure that the protocols and interfaces of
the SGW-PGW with other entities like eNodeBs, MME, PCRF
etc. are supported. Such a design choice ensures incremental
deployment alongside existing EPC platforms and avoids the
need to design, deploy and test novel protocols. Finally, to
support the expected growth of IoT devices, the re-assignment
of UEs across the LTE-gateways should be scalable and light-
weight.

To overcome the above challenges, SCOPE makes 2 key
design choices. Firstly, SCOPE classifies devices (or UEs) into
2 types depending on their service usage: (i) Managed UEs: In
this scenario, there is one-to-one mapping between the UE and
the service, i.e., the devices are specifically designed to access
or provide a particular service. For instance, several IoT-based
services, certain vertical-MVNOs and enterprise services fall
in this category. (ii) Unmanaged UEs: This category is repres-
entative of smartphones, tablets that are not tied to a particular
service. These devices can access several different OTT-based
services. By classifying UEs, SCOPE can dynamically offload
the processing of SGW and PGW functions for the traffic from
certain services, that have managed UEs, to remote DCs.

Secondly, to enable dynamic (re)-assignment of UEs across
the gateway resources, SCOPE decouples standard interfaces
and MME based gateway selection. SCOPE achieves such
decoupling by architecting the SGW/PGW cluster as two sep-
arate logical functions as shown in Figure 4. The figure shows

Figure 4: System Components of SCOPE.

a single instance of an SGW/PGW pool realized by SCOPE

that would be deployed at a particular DC. (i) SGWc/PGWc:
The control function that maintains the standard interfaces
with other entities of the EPC. Using the SDN paradigm,
the SGWc/PGWc pool manages several SGWu/PGWu VMs and
dynamically (re)-assigns UEs across the SGWu/PGWu VMs. (ii)

SGWu/PGWu: The data-plane function that performs GTP-based
packet forwarding in addition to other functions, such as QoS
enforcement, charging.

A2. Multiplexing across DCs: Since the assignment of
SGWu/PGWu VMs has to be done before the UE generates
traffic, SCOPE does not offload the processing of SGWu/PGWu
functions to the remote DCs for the flows belonging to unman-
aged UEs. The processing for the flows of unmanaged UEs is
offloaded only after the SGWu/PGWu functions in their service-
chains. This is because, for such UEs, their flows can only
be classified into the appropriate service, once they generate
traffic, that happens after the assignment of SGWu/PGWu VMs.
Since, there is one-to-one mapping between a managed UE
and its corresponding service, SCOPE has the flexilibity to
offload the flows of such UEs. To enable offloading for the
flows for managed UEs, the SGWc and PGWc pool of each
DC are connected to a subset of SGWu and PGWu VMs in
remote DCs. In addition to assigning 2 SGWu and PGWu VMs
in the local DC, SCOPE assigns an additional SGWu and PGWu

VM in the appropriate DC for managed UEs. For simplifying
configuration, all the UEs belonging to the same service are
assigned a SGWu and PGWu VM in the same remote DC. The
selection of the remote DC for a service depends upon its QoS
class: (i) In the case of an interactive service, the remote DC
is selected such that the end-to-end delay for the traffic of the
service will be the lowest. (ii) In the case of an elastic service,
the remote DC is selected at random. This capability gives
additional flexibility to the SCOPE controller when assigning
SGWu/PGWu resources to selective services.

IV. SCOPE: RESOURCE OCHESTRATION

SCOPE’s resource orchestration component aims to cater
to the requirements of both interactive and elastic traffic by
addressing the challenges specific to resource allocation and
data-path routing. Figure 4 shows the system components
of SCOPE, with a controller that coordinates the resource
allocation across a pool of DCs. At each epoch (several mins),
the broker at every DC j updates the controller with the
following: (i) total number of VMs (Vj), (ii) the estimated
current demand (tij) of each service (i) obtained from the

S 1 : SCOPE_Allocation()

Inputs:
tij : flow demands for service i originating at DC j
S: # of services, D: # of DCs, Cm: Capacity of MB m
Vj : # of VMs available at DC j, Bjk: Max. BW available between

DCs j and k
dijk: End-end delay perceived by the interactive service i originating

at DC j and egressed through DC k
Iiml is an indicator variable that is equal to 1 if the middlebox

function m lies before the function l in the Service Chain for
service i.

1: Interactive: rij , V
rem
j ,Brem

jk = AllocInteractive(tij , dijk, Vj , Bjk)
Outputs:
rij : The DC where the VM resources are allocated for service i
originating at DC j
V rem
j , Brem

jk : The unallocated VM and inter-DC bandwidth re-
sources at each DC j, given as input for elastic allocation.

2: Elastic: zijk(l) = AllocElastic(tij , V rem
j , Brem

jk)
Outputs:
zijk(l): Fraction of tij assigned to flow i, with VM resources

allocated at DC j until MB l and MB l onwards in the service
chain are allocated at DC k

SGWc/PGWc. The SGWc/PGWc aggregate the demand statistics
obtained from the SGWu/PGWu VMs, (iii) available bandwidth
(Bjk) between every pair of DCs (j, k), (iv) in the case of a
service with managed UEs, the location (remote DC) of the
SGWu/PGWu VMs that are pre-assigned with the UEs of the
service, and (v) in the case of interactive services, the average
end-end delays (dijk) that are measured when the flows of the
service (i) are routed through the local DC (j) and each of
the remote DC (k) in the DC pool.

The controller uses the above information of traffic demands
and topology to compute the allocation for each service (Sec-
tion B1). In addition to compute resources, the allocation
specifies the data-plane path for each service: (i) whether the
flows of the service should be egressed at the local DC or a
specific remote DC, depending upon the location of the VMs
allocated to that flow. (ii) if selected for offload, the point in
the service chain at which the service should be routed to
the remote DC. In case of a service with managed UEs, the
offload point could include any function, including the SGWu

or the PGWu. However, if a service is offloaded at the SGWu

or the PGWu VM, the specific remote DC is pre-determined
based on the location of the SGWu-PGWu VMs that contain the
state of the UEs of that service. In the case of services with
unmanaged UEs, the offload point is a function that lies after
the SGWu/PGWu in the service chain. The allocations computed
by the controller are sent to and enforced by the individual
brokers. To ensure that the routes of the services are configured
appropriately by the broker, SCOPE employs a programmable
overlay-routing framework (Section B2). In the case of LTE-
gateways, the broker enforces the allocation through the SGWc-
PGWc VMs.

B1. Computing Resource Allocations: SCOPE employs Al-
gorithm S1 in the central controller to allocate both the VM
and the inter-DC bandwidth resources among the services.
It adopts a two-step process, where it first assigns resources
across the network of DCs to the interactive service flows to

S 2 : Original Formulation for Interactive Service Flows

MINIMIZE
∑

i

∑
j

∑
k

∑
l y

il
jk · (d

i
jk/mink{d

i
jk}); Subject to:

1:
∑

i

∑
k

∑
l(y

il
jk ·

∑
m

tij ·I
i
ml

Cm
+ yil

kj ·
∑

m
tik·I

i
lm

Cm
) ≤ Vj ; ∀j

2:
∑

i

∑
l(y

il
jk · tij + yil

kj · t
i
k)] ≤ Bjk; ∀j, k

3:
∑

k

∑
l y

il
jk = 1 ∀i, j; yil

jk ∈ {0, 1}

Figure 5: Design Challenge for SCOPE’s resource allocation.

minimize their end-end delays; then it allocates the remain-
ing resources to the elastic service flows to maximize their
throughput. We now elaborate on these two steps.

B1.1 Interactive Services (Problem Formulation): The for-
mulation for allocating resources to the interactive services is
given in S2. Note that the delay dijk for a service i originating
at DC j and egressed at DC k is computed as the sum of
the avg. delay between the DCs j & k and the avg. delay
from DC k to the end-server for the flow i. The objective
is to minimize the aggregate of the (normalized) flow delays,
where the latter normalizes each flow’s delay to its minimum
delay possible (dijk/mink{dijk}). Constraints 1 & 2 define
the VM resource constraint at each DC and the inter-DC
bandwidth constraints Bjk respectively. The output decision
variable, yiljk is 1 if tij rate is allocated to the service i
originating at DC j, such that the VM resources until the
middlebox function l will be allocated at DC j and the
functions beyond l in the service chain of i will be allocated at
DC k. If all the VM resources are allocated locally, yiljk = 1

for j = k. The formulation for the elastic services would
be similar to S2 with a different objective. Since the output
variable yiljk is binary, the formulation becomes an Integer
LP, making it computationally intractable. Due to the unique
nature of the problem and the dual constraints of VM and
bandwidth resources, we cannot apply known techniques like
knapsack and bin-packing. While multi-dimensional knapsack
may leave out certain flows from allocation, multi-dimensional
bin-packing algorithms cannot work with a fixed number of
VMs.

It is possible to relax the problem to translate it to a LP

formulation by allowing the values of yiljk to be fractional.

However, this can lead to yiljk > 0 for more than two values
of l or k for the same service i, where the allocation of the
service is either split at multiple functions or across multiple
DCs or both. However, such an allocation becomes hard to
realize in a practical system. This is because, although all the
flows of the same service have to be processed by the same
network functions, different flows may get mapped to different

VMs of the same function to ensure efficient load balancing.
Hence, to ensure proper fractional splits, the VMs of the same
function will need to co-ordinate among each other as depicted
in Figure 5. In this scenario, 1 unit of traffic from service#1
has to be split at function T with X units to DC2, Y units
to DC3 and remaining locally at DC1. Assuming there are 2

VMs of the function T at DC1, they will need to co-ordinate
to ensure that the fractions X1 and X2 add up to X units and
fractions Y 1 and Y 2 add up to Y units. To ensure a light-
weight, practical routing-plane (Section B2), SCOPE assigns
resources such that (i) all the traffic of a service follows the
same routing-path and (ii) once offloaded to a remote DC at
any point in its service chain, the service is not re-routed to
another DC and is egressed at that DC.

B1.2 Interactive Services (Algorithm): While we use the
LP relaxation of S2 to obtain a genie lower bound on delays,
SCOPE devises a simple but efficient greedy algorithm that
operates in two steps as follows. In the outer loop (Steps 5-
23), the resources are allocated at the DC level. Here, the DC
(whose services are not allocated yet) that yields the minimum
utility is selected and resources are allocated to all the services

that originate from that DC (Step 18). The utility for a DC
Uj is the aggregate of the utilities of the individual services

that originate at that DC and is computed in the inner loop.
The utility for a service i originating in DC j and offloaded
to DC k is given by its corresponding normalized end-end

delay, namely U i
jk =

di
jk

mink{di
jk

}
. The inner loop (Steps 7-

16) determines the utility delivered by an un-allocated DC
in the set π as follows. It follows an iterative procedure,
where at each step the service that yields the smallest utility is
selected for resource allocation, subject to the bandwidth and
VM constraints of the allocation (Step 12); and the procedure
continues till no further service can be selected. Note that at
this stage, the services are not actually assigned resources; the
steps are simply used for computing the utility delivered by
the DC if it were chosen for allocation (Step 13) After every
DC in the set π is visited, the DC with the smallest utility
is selected (Step 18) and the allocation for all the services of
that DC is committed by updating their their VM and inter-DC
bandwidth usage in the appropriate DCs (Step 22). The output
is stored as rij that specifies the index of the DC where the
service i originating at DC j would be processed and egressed.

Remarks: Two points worth noting are: (i) SCOPE allocates
resources for an interactive service either completely at the
local DC or a remote DC but not at both (i.e splitting the
allocation across DCs at arbitrary points in the service chain).
While this leads to a small efficiency loss in the usage of VMs
across DCs, it greatly simplifies the allocation complexity.
Further, this efficiency loss is negligible and is made up the
elastic services (as we detail next), whose allocations are
allowed to be split across DCs at arbitrary points in the service
chain to better utilize the VM resources. (ii) The inter-DC
bandwidth constraints coupled with the VM constraints can
result in scenarios, where a solution is infeasible, i.e. the traffic
demand of all interactive service cannot be satisfied. In our

S 3 : Function AllocInteractive(tij , dijk, Vj , Bjk)

1: vij =
∑

l

tij
Cl

, ∀(i, j)
2: π ← {D}
3: % Outer Loop
4: for d ∈ [1 : |D|] do
5: V T

d = Vd; BT
dk = Bdk ∀k

% Inner Loop: Within every DC that is unassigned
6: for j ∈ π do
7: Aj ← ∅, Uj = MAX
8: for i ∈ S do
9: for k ∈ [1 : |D|] do

10: U i
jk = dijk/mink{d

i
jk}

11: end for
%Select only among the flows that satsfy the VM and BW
constaints

12: i∗, k∗ = argmin(i,k)s.t. i/∈Aj
{U i

jk}

13: Uj = Uj + U i∗

jk∗ ; Aj ← Aj ∪ i∗

14: V T
k∗ = V T

k∗ − vi
∗

j ; BT
jk∗ = BT

jk∗ − ti
∗

j

15: rij = k∗

16: end for
17: end for
18: j∗ ← argminj Uj

19: π ← π − j∗

% Update the resources used by the services of DC j
20: for i ∈ S do
21: k = rij∗
22: Vk = Vk − vij∗ ; Bj∗k = Bj∗k − tij∗
23: end for
24: end for

S 4 : Formulation AllocElastic(tij , V rem
j , Brem

jk)

MAXIMIZE λ; Subject to:
1:

∑
k

∑
l z

il
jk ≥ λ; ∀(i, j)

2:
∑

i

∑
k

∑
l(z

il
jk ·

∑
m

tij ·I
i
ml

Cm
+ zilkj ·

∑
m

tik·I
i
lm

Cm
) ≤ V rem

j ; ∀j
3:

∑
i

∑
l(z

il
jk · tij + zilkj · t

i
k)] ≤ Brem

jk ; ∀j, k
4:

∑
k

∑
l z

il
jk ≤ 1 ∀(i, j)

evaluations, we find that this happens rarely, and when it does,
it happens in only a very small number of servicesİn such
cases, SCOPE allocates VM resources to those services at their
local DC. This may incur more VMs than what is allocated
at the DC. However, we find this additional VM allocation to
be less than 10%, which can potentially be borrowed from the
slack compute resources available at a DC.
B1.3 Elastic services: Once the interactive services are satis-
fied, the allocation for elastic service is performed using the
LP formulation in S4. The idea is to compute the maximum
fraction (λ) of demand (tij) for each service such that (λ · tij)
will be allocated to the flow, thereby resulting in a max-min
formulation. The tij for an elastic flow can either be defined
as the estimated traffic demand or the maximum data rate
allocation according to SLAs with the service provider. The
output of the LP: ziljk gives the fraction of tij that will be
allocated to the service i originating at DC j, such that the VM
resources until the middlebox function l will be allocated at
DC j and the functions beyond l in the service-chain of i will
be allocated at DC k. The sum of the fractional allocations
ziljk should be atleast λ for a particular flow (Constraint 1).
To conform with SCOPE’s routing plane implementation, in

Figure 6: Offloading options for the various traffic types.

case the allocations for a service are split across multiple
DCs or at multiple points in the service-chain, the algorithm
simply selects the largest fractional allocation for the service.
If needed, SCOPE re-assigns the resources un-used by the (un-
allocated) smaller fractions of that service to other services

assigned to the same DC. In most of our evaluations, we see at
most 2-3 out of 500 services receiving such split allocations.
Note that by employing a fraction allocation SCOPE allows
resource allocation to elastic services to be split across DCs
at any arbitrary middlebox function in their service chain.
B2. Configuring the Data-path: Once the controller com-
putes the allocations for an epoch, the broker at each DC
configures the appropriate number of VMs per middlebox
function and the routing-plane for each service. In the case
of the LTE-gateways, the broker configures the SGWc/PGWc
VMs. First, SGWc/PGWc VMs provision the allocated number
of SGWu/PGWu VMs. Second, if the flows of a service have
to be offloaded to a remote DC for processing of the SGW
& PGW functions, the SGWc/PGWc configures itself to select
the SGWu/PGWu VMs at the appropriate remote DC for the
UEs belonging to that service (Section III:A2). The next
time a UE belonging to that service becomes active, the
SGWc/PGWc selects a SGWu/PGWu VM at the remote DC. For
UEs that belong to services that do not need to be offloaded
to remote DCs in an epoch, the SGWc/PGWc selects the master
or replica SGWu/PGWu VM based on their instantaneous load in
the epoch (Section III:A1). Note that offloading of the SGW
& PGW functions to remote DC is limited to services with
managed UEs (Section III). The supported offload options
for SCOPE for the different types of service are shown in
Figure 6. In the case of interactive and elastic services with
unmanaged UEs, the SGWu & the PGWu VMs have to be
allocated at the local DC as shown in the figure. For elastic
flows with managed UEs, either the SGWu or the PGWu VM
or both could be offloaded to a remote DC. However, in the
case of interactive flows with managed UEs that are offloaded
to a remote DC, both the SGWu & the PGWu VMs have to be
offloaded since SCOPE does not split the allocation at arbitrary
functions for interactive services. Note that these constraints
would be accounted for in the resource allocation.
B2.1 Overlay-Routing: To enable routing after the PGWu

VMs, SCOPE uses an overlay-routing framework to configure
the network-paths for each service as shown in Figure 7.
Doing so ensures (i) deployments independent of the network
hardware, potentially even in public clouds, (ii) scaling the
network functionality is easier when physical servers are added

Figure 7: Service-Chain routing in SCOPE.

since the framework is well-distributed. Overlay routing is
achieved using labels, so that the complex step of service

classification is performed only once at the edge nodes, while
the intermediate nodes perform label-switching. As shown in
the figure, the VMs of the PGWu and the egress-router perform
classification of the uplink and downlink traffic respectively.
In the intermediate nodes, the routing is agnostic to the
middlebox functions. Each physical server is equipped with
a shim-layer: SCOPEm that performs both the VM selection
and next-hop routing. When a PGWu or an egress router
receives a packet, the 5-tuple is used to classify the flow
into the appropriate service based on information stored in its
database. The next step is to select a VM for the next function
in the service-chain of the service. While there are multiple
ways to select a VM among the active VMs for a function,
including hashing, the current prototype of SCOPE randomly
selects a VM for a flow for simplicity. Once the VM is
selected for a flow, an entry is made to ensure that subsequent
packets of the flow can be routed appropriately. The packet
is then encapsulated with an outer header containing the IP-
address of the physical server that hosts the selected VM.
Before forwarding the packet, the PGWu or the egress router
adds a label with the following information: (i) serviceId:
Id of the service, (ii) currVMId: Id of the VM that will
process the packet, (iii) lastfnId: Id of the function in the
service-chain, after which the packet should be forwarded to
a remote DC for further processing, (iv) remoteDCId: Id
of the remote DC where the packet should be forwarded
after local processing. When the SCOPEm module receives
a packet from an interface, it strips the outer header and
forwards the packet to the VM based on the currVMId. When
the SCOPEm module receives the packet back from the VM,
it performs either of the following: (i) if the packet needs
further processing in the same DC, it is forwarded to the
appropriate physical server. The header is re-attached to the
packet after currVMId is updated with the Id of the selected
VM that will process the packet. Similar to the edge nodes,
SCOPEm selects a VM randomly among the active VMs for
the next function in the service chain of the flow. Once a
VM is selected, an entry is stored in SCOPEm to ensure that
subsequent packets of the flow are routed to the same VM.
(ii) if the packet needs further processing in a remote DC
(i.e., if the VM with Id:currVMId belongs to the function with
Id: lastfnId), it is forwarded to the default gateway for that
DC (remoteDCId). The headers are re-attached to the packet
after the field:currVMId is updated to represent the index of
the function rather than a particular VM. The specific VM for
the next function is chosen by the ingress router at the remote

 0

 50

 100

 150

 200

 250

 300

 0.1 1 10 100 1000

9
9
%

til
e
 L

a
te

n
cy

(m
se

cs
)

Demand of Elastic Flows (Mbps)

NO-SCOPE (50% Elastic)
NO-SCOPE (75% Elastic)

SCOPE (50% Elastic)
SCOPE (75% Elastic)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100

9
9
%

til
e
 L

a
te

n
ci

e
s

(m
se

cs
)

Inter-DC Bandwidth(Mbps)

Local Interactive Serv
Remote Interactive Serv

(a) Traffic Isolation (b) Interactive Routing

Figure 8: Efficacy of SCOPE on a real LTE Prototype

DC. This ensures that the VM-level information does not have
to be shared across DCs.

V. IMPLEMENTATION AND EVALUATION

Our prototype implementation of SCOPE consists of the
systems components shown in Figures 4, 7. The implement-
ation of the LTE-gateways was done using OpenEPC, which
is a LTE Release 9 compatible EPC network consisting of
standard EPC entities and an eNodeB emulator. We modify
the SGW and PGW implementations of the openEPC to
implement the SGWc,PGWc,SGWu and PGWu. In our prototype,
a few bytes in the IMSI are reserved for the serviceId

for SGWc/PGWc to map service flows to UEs. We implement
the routing framework: SCOPEm using the Click [10] modular
router. The GRE tunnel module in Click was modified to
build the functionalities specific to SCOPEm. To implement
the classifiers at the edge nodes, a click module is included
in the PGWu and egress routers. The classifier encapsulates
each data packet with a GRE header and inserts the label
to each packet with the relevant information in the key field
of the GRE header. We use several user-level middleboxes,
such as iprelay, Squid HTTP-proxy as generic functions. And
finally, the central controller and broker are implemented as
user-space applications. The algorithm for the allocation of
interactive services was written in python, while we use GLPK
linear programming solver [13] to solve the LP to allocate
resources for the elastic flows. To perform the necessary
rounding for the allocation of elastic services, we implemented
the post-processing module in python. The controller encodes
the allocation information as JSON format and sends it to the
brokers. The broker at a DC configures both (i) SGWc/PGWc
VMs and (ii) appropriate routing rules, at the granularity of
each service, in the SCOPEm shim layer.
6.1 Prototype Evaluation: It would be ideal to verify the
efficacy of SCOPE with real LTE data using large-scale testbed.
However, operators are too sensitive about their network
operations. Additionally, arranging an end-end LTE testbed is
challenging and costly. Our license agreements with OpenEPC
prevent us from deploying the source code over public clouds
to experiment at scale. Although we use a small-scale proto-
type, it provided certain key design insights and verifies the
feasiblity of SCOPE within the protocol constriants of the LTE
data-plane. We use web-traffic to emulate traffic for interactive
services and iperf to generate traffic for elastic services. We
employ the Vaurien TCP proxy to introduce random variability
in the network, such as packet loss, delay.

E1. Traffic Isolation: To show the efficacy of traffic man-
agement with SCOPE, we set up an experiment with 3 DCs,
such that the number of VMs is 10 in each DC and the
interDC-bandwidth fixed to around 200Mbps between each
DC pair. In one of the DCs, we setup around 25 HTTP
flows (interactive service), that access a given website from
the internet. We measure the end-end delay perceived by the
HTTP flows for 2 scenarios: 25 elastic flows (50% of the
total flows) and 35 elastic flows (75% of the total flows).
We repeat the experiment with increasing demand from the
elastic traffic and plot the 99%tile end-end delays for the
interactive flows for the case with SCOPE and with no-SCOPE,
that basically routes and processes all the flows at the local
DC. Refering to Figure 8(a), as the traffic for the elastic flows
is increased beyond 100Mbps, the delays for the interactive
flows drastically increases to about 250 miliseconds with no-
SCOPE. While, SCOPE is effective in allocating the resources
for the elastic traffic at the other 2 remote DCs, since it
gives priority of allocation to the interactive services. With
SCOPE, the delay for interactive flows is below 100 milisec
for both the scenarios. In the figure, inter-DC bandwidth of
zero corresponds to the case where all services are processed
locally even with SCOPE.
E2. Effective routing for interactive: In addition to provid-

ing isolation from elastic flows, SCOPE strives to allocate
resources to the interactive services along a network-path that
minimizes the end-end delays. To show the efficacy of SCOPE
in minimizing delays, we conduct an experiment with a similar
setup to E1. At each DC, we run a mix of 2 interactive services,
such that each interactive service has 20 HTTP flows at each
DC. The interactive service, named Local service, is setup
such that the end-end delays for the flows of the service are
lowest when routed through the local DC. Such a service is
representative of entities, such as Google that have distributed
content networks expected to have good peering with the
operators DCs. On the other hand, the Remote service, is
such that the end-end delays for the flows of the service are
lower when egressed at a subset of the DCs. Such a service is
representative of most enterprise networks that are expected to
be relatively more centralized. To show the efficacy of SCOPE’s
offload mechanism for interactive services, we measure the
end-end delays for the flows of the Remote service with
different values of the inter-DC bandwidth. As shown in
Figure 8(b), the delays for such flows reduces from about 45
milisecs to around 20 milisecs as the inter-DC bandwidth is
increased. As the bandwidth increases, it facilitates SCOPE to
allocate resources for higher number of interactive services at
remote DCs that would minimize their delays. Furthermore,
we notice that the offload of Remote service also reduces the
end-end delays for the Local service. The reason for this effect
is that the DCs were relieved of VM resources when offloading
the Remote service, ensuring more resources for the Local

services.
6.2 System Simulations: To show the efficacy of SCOPE in
larger setups with higher number of VMs and services, we
built a custom event-driven simulator in Python.

S1. End-End Experiment: We setup the experiment with
500 services, including both interactive and elastic services

in a network of 3 DCs; such that each DC has a compute
capacity of 40, 44 and 30 VMs and the inter-DC bandwidths
are 1Gbps. To show the design choices behind the algorithms
employed by SCOPE, we compare SCOPE’s allocation with
the following schemes: (i) LOCAL that allocates the resources
for all services in the local DC, (ii) FRACT that allocates
resources for the interactive services according to the original
formulation S2 in Sec III, but relaxed to LP. FRACT may result
in splitting the allocation for a service across DCs, but is
highly efficient in packing the VM allocations across services

and (iii) eGREEDY that allocates resources to elastic services

using a greedy algorithm. During allocation, eGREEDY iterates
through all the elastic services and selects the service which
gives the best utility. The utility is given as log(throughput),
resulting in a proportional allocation across flows. We compare
the performance of the above algorithms with SCOPE based
on the end-end delays of interactive services, the number of
VMs provisioned at every DC and the throughput received
by the elastic services. As shown in Figure 9(a), the CDF of
the end-end delays obtained with SCOPE is very close to the
delays obtained with FRACT. This result shows that SCOPE is
as effective in minimizing delays for the interactive services

as the relaxed LP formulation S2 in Sec III, without splitting
the allocation of a service across multiple DCs. The delays
with SCOPE are higher than those obtained with LOCAL, since
LOCAL does not have the ability to route interactive services

across DCs to minimize delays.
We now plot the number of VMs allocated by the al-

gorithms: LOCAL, FRACT and SCOPE for both interactive (as
denoted by figure legends) and elastic services (corresponds
to the upper shaded bar) in each DC. Refering to Sec III,
to ensure a practical design of the routing plane, SCOPE

employs a greedy algorithm to allocate interactive services

to ensure integral allocation along the same network-path
for each service. Hence, as compared to FRACT that splits
allocations for the interactive services, SCOPE compromises
on efficient VM packing for interactive services. However, as
seen in Figure 9(b), the VM usage with SCOPE is only about
10− 15% higher than FRACT. Moreover, the number of VMs
allocated with SCOPE is marginally higher compared to the
VM usage with LOCAL. The key difference is that SCOPE is
able to better assign and fit the resources across the services

on a network-wide level as opposed to LOCAL.
Finally, in the same experiment, we also plot the CDF of the

throughput received by the elastic services with LOCAL, SCOPE
and eGREEDY. Clearly, from Figure 9(c), SCOPE out-performs
LOCAL, since it is more efficient in multiplexing the resources
for both interactive and elastic services as opposed to LOCAL,
that can only use the unused resources at the local DCs. Since,
SCOPE adopts an LP formulation (S4 in Sec III-B1.4) for elastic
services, the fractional allocations for elastic services are
rounded by selecting the largest fraction. However, despite this
approximation, SCOPE outperforms the allocation performed
by eGREEDY. We observed that the eGREEDY algorithm was

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

C
D

F

99%tile End-end delay (msecs)

LOCAL
SCOPE
FRACT

 0

 10

 20

 30

 40

 50

DC1 DC2 DC3

V
M

 P
ro

v
is

io
n

e
d

FRACT
SCOPE

LOCAL

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Throughput

LOCAL
SCOPE

E-GREEDY

(a) Interactive Delays (b) VM Provisioning (c) Elastic Throughput

Figure 9: Simulation Results

ineffective in packing the elastic services across the residual
VMs and bandwidth unallocated after the allocation for the
interactive services.

VI. RELATED WORK

WAN Research: At a high level, the data plane management
aspects of SCOPE is similar to the traffic engineering systems
for inter-DC wide area networks (WAN) [7], [8]. They have
shown that centralized resource management coupled with a
flexible software-defined data-plane leads to efficient utiliza-
tion of network resources in large scale network operations.
While SCOPE is motivated by the concepts and key findings
of such systems, the resource allocation algorithms and the
configurable data plane design are instrumented to the require-
ments of mobile networks, resulting in a standards-compliant,
ready-deployable efficient data-plane.
Core Network Research: A couple of studies [3], [14]
have proposed devising new architectures and protocols to
improve efficiency of mobile networks. Although effective,
such approaches are costly to deploy as they require a com-
plete overhaul of the existing network architecture, requiring
modifications to the eNodeBs as well. SCOPE supports current
standards, ensuring cost-effective, incremental deployments.
On the industrial front, a few companies, such as Alcatel
Lucent and NEC have launched software based EPC com-
ponents [15], [16], including the LTE-gateways. However,
they have migrated the implementations from hardware-based
systems to VMs, with focus on packet-processing optimiza-
tions. SCOPE is complementary, since it proposes an enhanced
data-plane management layer to allocate the virtual resources
efficiently.
Middlebox Management: Several prior research works have
focussed on the problem of efficiently routing flows of middle-
box functions in the context of data-center networks [17], [18],
[19]. These works focus on different aspects of middlebox
deployments, such as executing middleboxes in the cloud [17],
software-defined routing for legacy middleboxes [18] and
virtualized middleboxes [19]. However, such works are limited
in scale within the context of data center networking. More
importantly, they do not have to consider the constraints that
are unique to LTE networks.

VII. CONCLUSION

To ensure faster, incremental deployments of NFV-based
mobile core networks, we present the design and imple-

mentation of SCOPE. Firstly, SCOPE employs central resource
allocation to effectively allocate the compute and bandwidth
resources of core networks across multiple DCs. Secondly,
SCOPE includes primitives to perform policy-based prioritized
traffic management across services with different require-
ments. Finally, SCOPE re-architects the LTE-gateway imple-
mentations to ensure flexibility in enforcing the allocations
across different services. Our implementation on a end-end
LTE Core network testbed and large-scale simulations demon-
strate both, the efficacy of SCOPE and its feasibility within the
context of today’s mobile networks.

REFERENCES

[1] Ericsson Traffic Report. http://goo.gl/iMzj9M.
[2] Forecast: The Internet of Things. http://www.gartner.com/newsroom/

id/2636073.
[3] Mehrdad Moradi, Wenfei Wu, Li Erran Li, and Zhuoqing Morley

Mao. SoftMoW: Recursive and Reconfigurable Cellular WAN
Architecture. In ACM CONEXT, 2014.

[4] AT&T Domain 2.0 Vision White Paper, 2013. http://tinyurl.com/
p4uv3s3.

[5] Banerjee et. al. Scaling the lte control plane for future mobile access.
ACM CONEXT, 2015.

[6] Xueli et. al. An. DMME: A Distributed LTE Mobility Management
Entity. Bell Labs TR, 2012.

[7] Jain et. al. B4: Experience with a globally-deployed software defined
wan. In ACM SIGCOMM CCR, 2013.

[8] Hong et. al. Achieving high utilization with software-driven wan. In
ACM SIGCOMM CCR, 2013.

[9] OpenEPC. http://www.openepc.com/.
[10] Robert Morris, Eddie Kohler, John Jannotti, and M. Frans Kaashoek.

The click modular router. SIGOPS Oper. Syst. Rev., 33(5):217–231,
1999.

[11] 3GPP Spec for GTP-U v1.
http://www.3gpp.org/DynaReport/29281.htm.

[12] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew
Warfield. Split/merge: System support for elastic execution in virtual
middleboxes. In NSDI, 2013.

[13] GLPK (GNU Linear Programming Kit). https://www.gnu.org/software/
glpk/.

[14] Xin Jin, Li Erran Li, Laurent Vanbever, and Jennifer Rexford.
Softcell: Scalable and Flexible Cellular Core Network Architecture.
In ACM CONEXT, 2013.

[15] NEC Virtualized Evolved Packet Core. http://tinyurl.com/nuefq28.
[16] The Journey to Packet Core Virtualization. http://resources.alcatel-

lucent.com/asset/174234.
[17] Sherry et. al. Making middleboxes someone else’s problem: network

processing as a cloud service. ACM SIGCOMM CCR, 2012.
[18] Qazi et. al. Simple-fying middlebox policy enforcement using sdn. In

ACM SIGCOMM CCR, 2013.
[19] Sekar et. al. Design and implementation of a consolidated middlebox

architecture. In NSDI, 2012.

