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Abstract— We present a new distributed approach that estab-
lishes reputation-based trust among sensor nodes in order to
identify malfunctioning and malicious sensor nodes and minimize
their impact on applications. Our method adapts well to the
special characteristics of wireless sensor networks, the most
important being their resource limitations. Our methodology
computes statistical trust and a confidence interval around
the trust based on direct and indirect experiences of sensor
node behavior. By considering the trust confidence interval, we
are able to study the tradeoff between the tightness of the
trust confidence interval with the resources used in collecting
experiences. Furthermore, our approach allows dynamic scaling
of redundancy levels based on the trust relationship between the
nodes of a wireless sensor network. Using extensive simulations
we demonstrate the benefits of our approach over an approach
that uses static redundancy levels in terms of reduced energy
consumption and longer life of the network. We also find that
high confidence trust can be computed on each node with a
relatively small memory overhead and used to determine the
level of redundancy operations among nodes in the system.

I. INTRODUCTION

Due to the criticality of many WSN applications including
monitoring and early warning systems, it is crucial that the
information obtained from these networks be trustworthy.
Decisions based on the sensor network data can have serious
economic and social impact. Therefore, nodes in a sensor
network must perform their functions reliably. However, due
to their limited capabilities for economic viability, deployment
in “unfriendly” physical environments, and risk of physical
attacks, not all sensor nodes can be expected to behave reliably
at all times [1]. It then becomes necessary to identify malfunc-
tioning and malicious or compromised nodes, and isolate them.
Detecting such misbehaving nodes from a location external to
the network is difficult. This is because sensor nodes perform
in-network data processing and aggregation. Wireless sensor
networks can be secured most effectively against misbehaving
nodes if the nodes closest to the source of the problem
themselves can detect such misbehavior and react accordingly.

Currently, to deal with node misbehavior, critical sensor
network deployments require sufficient redundancy to meet
the needs of the particular application. However, complete
redundancy typically requires a minimum of triple the amount
of hardware (and energy expenditures) to ensure that a 2/3
Byzantine consensus can be achieved when a sensing or aggre-
gation discrepancy is encountered. Such full redundancy has
traditionally required a constant level of energy expenditure
irrespective of network threat and misbehavior levels.

Wireless sensor networks must protect themselves from a
variety of threats. In WSNs, typically, a large number of
sensors are deployed in some area of interest. These sensor
nodes are expected to work unattended even in naturally
harsh physical conditions. They are also often deployed in
accessible areas where they could be physically attacked. The
harsh physical conditions, or physical attacks, could result in
malfunctioning of the sensor devices. Sensor nodes could also
be compromised by tampering, and replicated. Additionally,
malicious sensor nodes could be dropped into the area of
deployment. These malicious sensors could eavesdrop on
sensor communications, pose as legitimate nodes, disrupt the
functioning of the sensor networks by imposing themselves
as “nodes-in-the-middle”, and disrupting service in a variety
of ways. We have loosely classified the different types of
misbehaviors in a WSN below. This classification is not
intended to be comprehensive. Our goal here is to identify
the type of misbehavior our research has targeted.

• Misbehavior 1: Sensor nodes malfunction but are not
malicious.

• Misbehavior 2: Malicious attacker nodes (possibly
dropped in the sensor field) eavesdrop on communications
between genuine nodes, impersonate genuine nodes, and
generate denial-of-service traffic or signals. However, in
this threat model, there are no compromised nodes.

• Misbehavior 3: Compromised nodes, although appearing
to be genuine, malfunction maliciously. They are also
likely to cause the second type of misbehavior.

Our research focuses on misbehavior 1. We have established
a trust system in sensor networks where nodes could mal-
function but are not malicious. However, our trust system can
also be a useful component for any solution that addresses
misbehavior 3. This is because a compromised node might
be able to authenticate itself correctly and still malfunction
maliciously. Our trust system detects malfunctioning, whether
malicious or not. Our research however, does not address mis-
behavior 2, which requires suitable authentication and privacy
mechanisms. In addressing misbehavior 1, we have focused on
the following three basic functions of WSNs - accurate data
collection, data routing, and data processing and aggregation.
In this paper we present a new distributed approach that
establishes reputation-based trust among sensor nodes that
allows the system to dynamically adapt its redundancy based
on the confidence that nodes have between each other to



behave correctly (trust). We show that a significant amount of
energy can be conserved and the sensor network life extended
when redundancy is varied according to the changing levels
of trust between nodes.

The remainder of this paper is structured as follows. Sec-
tion II summarizes existing work on building trust. Section III
describes our trust system, its various components, and our
trust computation methodology. In Section IV, we evaluate
our trust model and in Section V, we present conclusions and
potential future areas of research.

II. RELATED WORK

Trust has been studied in a variety of networks and appli-
cations. A large number of trust models have been proposed
in social networking. In this section, we review only those
existing works that are somewhat related to our research.
Golbeck and Hendler [2] extend the concept of the semantic
web to include reputation ratings. The algorithm they present
is based on voting to derive either a complete trust or complete
lack of trust in an entity. No partial trust is derived with their
algorithm. They do not account for history of interactions and
they assume perfect connectivity. There is no discussion of
how to cache reputation ratings. Cahill et al have outlined the
importance of considering both risk as well as trust when mak-
ing decisions [3]. If risk is low, then the action threshold for
trust can be low. The trust model component of our research
is based on the hypothesis of Carbone et al, which introduces
a model that takes uncertainty into account. Caching trust is
discussed in [4] but only to the extent of caching ciphers.
Cache eviction based on content is not discussed. Gray et
al introduce the importance of calculating trust based on
the “Small Worlds” approach [5]. They recommend a cache
eviction algorithm also based on a “Small Worlds” approach.
Reputation-based trust has also been proposed for peer-to-peer
systems. Ganeriwal et al present a Bayesian based approach
for building WSN trust [6]. Bayesian methods, though memory
efficient, are not suitable for delay-tolerant networks where
significantly stale information may arrive at the same time
as fresh information. Chen and Yeager have constructed a
decentralized trust system for the Sun JXTA platform [7]. They
also take a Bayesian approach and use discrete trust ratings
which cannot provide the same level of accuracy as continuous
trust ratings. The confidence levels that they propose are not
based on statistical confidence intervals. Although the above
existing research addresses the problem of trust, none looks at
building trust specific to resource-limited and delay-tolerant
wireless sensor networks. Theodorakopoulos and Baras in [8]
present an algorithm for forming trust in Ad Hoc networks
based on seminirings. This approach however lacks the abil-
ity to easily decay the usefulness of previous experiences
based on the risk sensitivity (aversion level) of each node
independent of other nodes. Our method for trust calculation
allows each node in a system to independently evaluate and
weigh the experiences of other nodes without reliance on
summarized recommendations of other nodes. Avinash et al
in [9] present a reputation based system that precludes the

ability for nodes to perform their own assessment of original
experience evidence. Their system is also delay in-tolerant.
Yu et al in [10] present an information theoretic framework
for trust evaluation. Their framework along with the work of
Kraniewski et al in TIBFIT [11] do not leverage statistical
confidence intervals nor do they address energy consumption
optimizations. There is also a growing amount of research on
security in WSNs (e.g., [1], [12]–[16]. This research mainly
addresses misbehavior 2, and to some extent misbehavior 3 as
described in Section I. Unlike this existing research, our focus
is on building trust in the presence of malfunctioning nodes
while reducing energy consumption. Trust is not a replacement
for security nor is security a replacement for trust. Trust
and security rather complement each other. Within a system
building trust may require the use of secure protocols and
maintaining security may be aided by trust establishment and
maintenance.

III. TRUST SYSTEM

Social networks serve as an example by which we created a
trust model for wireless sensor networks. Social trust is built in
two phases. Before we directly interact with an individual, we
might postulate a preconceived level of trust in that individual.
Preconceived trust is formed from evidence we are given
from other individuals in our social network. We automatically
discount the accuracy of the obtained information based on
our trust in the individuals who are generating and passing
the information. We tend to trust information received via
our direct social peers more than information received from
the second layer of our social peers. The second phase of
building trust is to interact directly with the individual or
observe the direct interaction of others with the individual
and start to establish a history of trust with that individual. In
the case of WSNs, these observations to the sensing, routing
and aggregation behavior of other nodes may be made by
overhearing the radio communications of these nodes.

A. Context-Specific Trust

Social trust in relationships may be built over days, months,
years or even decades. Each individual might have a different
valuation of trust built over time. Earning trust may take
a different length of time depending on the circumstances.
Again, the trust we form with other individuals is limited
to specific contexts based on the interaction we have had
with them. Typically we do not trust our preferred automobile
mechanic with legal questions nor do we trust our preferred
lawyer with questions regarding fuel injection systems.

Following the social network model, we have postulated
that, given a network of context-specific and directional-trust
relationships connecting two entities, any entity can place a
confidence rating on any piece of data/fact/statement generated
by another entity that falls within the given context. In the case
of WSNs the data produced by other nodes can be sensor
readings, routed data, or aggregated data. We have further
presumed that a confidence interval about the trust rating
may be established to allow the entities to make accurate



decisions. In the case of WSNs, this confidence interval will
assist nodes in making decisions for routing, sensing, and data
aggregation. Data should not be routed through nodes that can
not be trusted. Likewise data collected from a misbehaving
node or routed or aggregated through should not be propagated
through the network. Nodes may need to expend more power
sensing to take over for a neighbor node whose sensors can no
longer be trusted. Nodes should not include sensor readings
in aggregation processing from nodes that cannot be trusted
to provide generally accurate readings.

B. Collection of Experiences

We describe four types of experiences below. For each type
of experience, we list the methodology we used to enable a
node to turn the experience into a useful piece of information.

Sensor readings: Nodes follow the process of overhear-
ing sensor readings of nearby nodes and then comparing them
to their local sensor readings. If the remote sensor readings are
correlated closely enough with the local sensor readings (they
are within a threshold set by decaying the correlation of values
based on the distance between the sensor ranges), then the
remote sensor reading is considered to be valid. Overhearing
the source node of sensor readings is not the only way to
evaluate a sensor reading. Intermediary nodes that have been
requested to route raw sensor information (and their respective
neighbors that can overhear them) can also evaluate each
sensor reading for accuracy albeit with more limited ability
given the increased distance from the source nodes sensors.
The greater the perceived degradation in sensor accuracy, the
less the source sensor node is trusted to accurately sense in
the near future.

Experience generation accuracy: This is the evaluation
of a neighbor’s accuracy in recording direct experiences. To
evaluate a neighbor’s ability to generate experiences, a node
listens to experiences generated and communicated by that
neighbor and compares these experiences to its own. The larger
the discrepancies in perceptions of experiences, the less trust
a node will have in its neighbor’s ability to accurately gener-
ate experiences. Examples of collection misbehavior include
improperly weighing or evaluating an experience.

Observed data propagation accuracy (routing): Neigh-
boring nodes within a certain proximity to a node performing
some routing action are able to overhear both the incoming
packet and the outgoing packet. These neighboring nodes can
compare the outgoing routing destination of each overheard
packet to its information in its own routing tables. If the packet
apparently advances toward its intended destination, then the
routing behavior of the overheard node is considered correct.
If the packet does not get routed, gets corrupted or modified,
or gets routed along an incorrect path, then the experience is
recorded as a misbehavior by the overhearing node.

Observed accuracy of data aggregation: We examined
two types of aggregation behavior observance. The first is one
where a node is close enough to a neighbor to overhear all
aggregation communication (inputs and outputs). In this case a
node will simply verify that the aggregation function behaved

correctly. The second and more complex case is where the
aggregation behavior of a node is to be evaluated for a node
that is far enough away not to be able to overhear all its
inputs. In this case we relied on nodes that can compare the
result of multi-path propagation schemes for data aggregation.
Examples of aggregation misbehavior include inaccurately
aggregating data due either to processor error or to intentional
bias.

C. Trust Computation Methodology

In this section we present our trust computation method-
ology using experience records as input and providing as an
output a trust value and a confidence interval based on those
experiences. We present this methodology in the context of one
entity, E1, that wishes to form trust in another entity, E2. Al-
though a typical motivation for trust formation between nodes
is decision-making, we do not explore different motivations
here because the methodology is indifferent to motivation.
Before trust is formed, entity E1 observes the behavior of E2
and judges whether the behavior is correct. Each opportunity
E1 has of observing and judging the behavior of E2 is recorded
in an experience record. An experience record contains at a
minimum the following pieces of information:

• Identification of the entity (node) being observed. In our
example this is the identity of E2. This may be a unique
node-id, unique location or some other type of entity
identifier.

• Identification of the entity (node) making the observation.
In our example this is the identity of E1. This may be a
digital signature. The identity of the observer is necessary
in the cases where experience records are shared between
nodes.

• The context type of the experience/observation. If, for
example, E1 judges E2’s ability to sense temperature
accurately, the context of the experience would be data
sensing. In WSNs, data sensing is one important re-
sponsibility that nodes fulfill and thus is well served by
neighbor observation. Two other important responsibili-
ties are a) data routing, propagation and aggregation, and
b) generation of an experience record. Experience record
includes E2’s ability to observe other nodes accurately,
and generate experiences itself.

• A timestamp indicating how long ago the experience
took place. This information is important given that
experiences become stale over time (nodes may change
behavior in the interim).

• The trust value. This is the actual rating of trustworthiness
that the observer (E1) assigns the node being observed
(E2) for this particular experience. We use xi to represent
the trust value of experience (sample) i

• A weight that the observer (E1) assigned to the expe-
rience record indicating the amount of observation that
went into generating the experience record. A limited
or brief experience would be weighted lower than a
longer lasting or more intense experience. We use wci



to represent the context specific weight that an observer
assigns to the experience i.

E1 thus observes the behavior of E2 and records these
experiences in a local experience cache. Over time, these
experiences will become stale and E1 may find it necessary to
evict an existing record in the trust cache to make room for a
newer record. E1 uses this trust cache to store both experiences
that it recorded itself as well as experience records it receives
from other nodes in the network.

1) Initial Evaluation of Experience Records: When E1
wishes to form a trust confidence interval for E2, it first
identifies the context of the desired trust confidence interval
(ability to sense data, etc). It queries its experience cache for
records that have E2 being evaluated in this context. The goal
of E1 is to find the mean of these trust values and to identify
a confidence interval about this mean. The typical method for
finding a mean (x) of the sample values is simply to add up
all of the values and divide by the number of samples:

x =
Σxi
n

The typical method for finding a confidence interval about this
mean is to first estimate the variance of the population σ2:

σ2 =
Σ (xi − x)

2

n− 1

This estimated variance is used to create a confidence interval
about the mean [17]:

x± tn−1,1−α/2
√
σ2/n (eq.1)

where α is 0.10 for a 90% confidence interval, 0.05 for a 95%
confidence interval, etc. The t in the above equation represents
the student − t distribution. If the confidence interval is
sufficiently narrow (as determined by the context), E1 proceeds
with its decision-making process. However, if the confidence
interval is too wide then additional experiences are collected
at the expense of additional resources.

The above method constitutes the basis of our trust com-
putation methodology. Experience records may be received
after a significant delay. The significance of an event may
be different between observing nodes. A node that creates an
experience may be unreliable or malicious. For these reasons,
our trust system establishes a confidence interval around a
weighted mean [18], [19] to overcome this problems rather
than taking a Bayesian approach.

To create the confidence interval around a weighted mean,
E1 first calculates a weight Wi for each sample point i. It does
this by combining the context specific, level of observation
weight wci with a new weight wti that is based on the age
of the experience record. The formula behind wti may be
chosen at the discretion of E1 but the idea is that the older
the sample point (experience record) is, the lower the weight
should be. This may be for instance some constant chosen
from the interval [0,1] raised to the power of the age. These
two weights are combined as follows:

Wi = wtiw
c
i

E1 E2

E3

1) E3 overhears and observes E2’s behavior

3) E3 passes these experience records on to E1
4) E1 evaluates E3’s accuracy in generating 

     based on its trust in E3.

     experience records and discounts the
     experience records it receives from E3

2) E3 generates experience records

Fig. 1. Building trust via a third party

Using this total weight for each sample point E1 then deter-
mines the weighted mean (xw) of all of the experiences with
E2:

x = Σ

(
Wi

ΣWi
xi

)

From this weighted mean, the unweighted variance (σ2) is
then calculated as usual:

σ2 =
Σ (xi − xw)

2

n− 1

and then turned into a weighted variance (σ2
w) by E1 via the

following manner:

σ2
w =

σ2ΣW 2
i

(ΣWi)
2

Armed with the weighted mean xw and the weighted variance
σ2
w, E1 then forms a confidence (eq.1) interval about the

weighted mean. To reduce the effect of stale samples and
to reduce bias created by correlated samples, the tn−1,1−α/2
value is established not by using the usual total number of
samples points (n) but instead by using a deflated number
of degrees of freedom. This deflated number of degrees of
freedom is obtained by simply adding up the sum of all of
the total experience weights: ΣWi. When all total experience
weights are in the interval [0,1], the net effect of using this
deflated number for degrees of freedom is a widening of the
confidence interval. This widening is important due to the
reduced confidence we have in correlated and stale values.

2) Incorporating experiences collected by third parties: Al-
though first-hand experiences are the most valuable, it is also
valuable for E1 to collect and weigh experiences generated by
neighbors of E2. To use experience data produced by other
neighbors of E2, E1 must first establish its own trust in the
ability of those neighbors to generate experiences. We will use
Figure 1 as an example. E3 has generated experiences relating
to E2, but until E1 has established its own trust in E3, these
experience records cannot be used by E1. E1 starts the process
of establishing trust in E3 by comparing experience records it
(E1) has created while observing certain sensor network/node
behavior to those created by E3 for the same behavior. In
this process, E1 is able to collect experiences of E3’s ability
to generate experiences. It then calculates the confidence



E1

E3 E4

1) E4 overhears and observes E5’s behavior
2) E4 generates experience records
3) E4 passes these experience records on to E3
4) E3 passes these experience records on to E1 
5) E1 calculates its trust in E4’s ability to
     accuratly generated experience records and
     E3’s ability to accurately route data. E1
     then discounts the experience records 
     generated by E4 based on this trust in 
     E4 and E3.

E5

Fig. 2. Building trust in a remote node

interval about the weighted mean of these experience using
the equations for weighted mean, weighted variance and a
deflated number of degrees of freedom, described above. The
resulting confidence interval in the context of E3’s Experience
Generation accuracy is formed by using eq.1. This confidence
interval is then transformed by E1 into a fixed point τEG3

which represents the level of trust E1 places in E3’s ability
to accurately generate experiences. τ stands for “Trust”. The
number 3 is the id of the neighbor being evaluated, and
EG stands for “Experience Generation”. Specifically, the trust
level, τEG3 , is calculated based on the following equation.

τEG3 = xw − ρ ∗ tn−1,1−α/2 ∗
√
σ2
w/n (eq.2)

Here, ρ, (ε[−1, 1]) is the level of aversion held by E1 (the
node doing the evaluation). It identifies the risk E1 is willing
to take in E3’s experience generation ability. In the worst case,
ρ = 1, implying that E3 chooses the lowest possible trust value
in E3’s experience generation ability. In the best case, ρ = −1,
implying that E1 is willing to accept the highest possible trust
value in E3’s experience generation capability.

3) Incorporating distant observations: So far we have
covered how a node (E1 in our example) can use experience
records generated by both itself and immediate neighbors.
We will now explain how experience records generated by
nodes farther than one hop away (non-directly connected),
which can be used in this trust system. This is experience
data produced by entities that have potentially never interacted
or communicated directly with the node doing the evaluation.
For example: E1 wishes to establish a trust confidence interval
about E5’s sensing accuracy. E1 is not near enough to watch
and evaluate E5. An additional entity E4, however, is near
enough to evaluate and generate experience data on E5 and
it happens to be near enough to E3 for radio communication
as illustrated in Figure 2. For E1 to utilize the experience
data generated by E4, experience data must be accurately
generated and propagated by E4. E1 thus must first evaluate
E4’s ability to accurately generate experiences in the same
manner as described above. However instead of directly being
able to evaluate E4, one must instead rely in experience
records generated by E3. After receiving experience records
relating to E4’s ability to accurately generate experiences, E1
combines these into a confidence interval and then in turn into

a single trust value, τEG4 , using eq.2. Likewise, E1 evaluates
E3’s ability to accurately propagate data. There may exist cases
where nodes can accurately generate experiences and sense
data, but due to faulty (or malicious) software, fail to route
and propagate data accurately. E1 uses all of its available
experience records related to E3’s ability to propagate data
and creates a confidence interval and then a single trust value,
τDP3 , also using eq.2. where τDP3 in this case represents E1’s
trust in E3 in the context of “Data Propagation”. E1 then uses
the trust values it has established in E4 (ability to accurately
generate experiences) and E3 (ability to accurately propagate
data) to discount the weight of the experiences recorded by
E4:

Wi = wtiw
c
i τ
EG
4 τDP3

If a certain piece of experience data must be propagated
through multiple nodes, then that piece of experience data is
discounted by the evaluator’s trust in each intermediate node
to propagate the data accurately. Hence, the generic equation
for assessing the weight of any arbitrary experience record is:

Wi = wtiw
c
i τ
EG
generator−id[τDProuter1 ∗ τDProuter2 ∗ ...]

where τEGgenerator−id is the evaluators trust in the node that
recorded the experience (in the context of Experience gener-
ation) and τDProuterX is repeated for each node through which
the experience record was propagated. With this method an
evaluator establishes trust through a chain of nodes and can
use experience data generated by distant nodes.

4) Initial bootstrap of the trust system: Initialization of the
system starts by nodes recording their own direct experiences
with their physical neighbors. These experiences should in-
clude the evaluation of neighbors in at least the two special
contexts of Experience-generation and Data-propagation. Each
of these direct experiences is used for calculating the trust the
evaluator node has in its neighbors. The evaluator calculates
the weight (Wi) for each of these experiences as: wtiw

c
i

Here wti is an age based weight (described in the previous
section) and wci is a weight assigned by the evaluator based
on the level of contact the experience represents. For each
neighbor, the experiences in each of the above contexts are
grouped together to form a trust confidence interval in that
particular context. For example, a node wishing to form a trust
confidence interval in the context of Experience-generation for
a particular neighbor will follow this protocol:

1) Observe experience data generated by the neighbor. This
experience data would be in some context other than
experience generation.

2) Compare that experience data to locally generated ex-
perience data and rate the accuracy of the experience
data generation. From this comparison a new experience
point is generated.

3) Each of these experience points are weighed based
on their age and context-weight to form a confidence
interval: xw ± tn−1,1−α/2

√
σ2
w/n.



5) Limited memory for experience data: Sensor nodes
usually have limited memory for storing experience data. If a
new and apparently useful piece of experience data is acquired
and must be added to a completely full experience data store,
then an existing piece of experience data must be evicted. The
eviction only takes place if the new piece of experience data
has a higher “usefulness” than a piece of information already
in the cache. We find that the resulting cache replacement
pattern is similar to the “small worlds” replacement method
as recommended in [5]. In order to gain unfair advantage,
certain entities could attempt to flood all receptive nearby
entities with messages and requests for interaction in attempt
to boost their own trust rating. For this reason, entities would
find it beneficial to throttle the rate of new experiences from
other entities.

6) Experience correlation: Our statistical methodology for
computing confidence intervals expects independent samples.
If the experience data are correlated, several samples must be
aggregated to generate a single sample [17].

7) Location Awareness: Sensor nodes must have a good
sense of their environment in order to evaluate experiences
such as sensor values received from other sensor nodes.
Location awareness is necessary for extrapolation of sensor
data. Typically node location is not known beforehand thus an
in-network location awareness system [20] must be used. The
location information required for evaluating experiences will
be no more than that already required for efficiently routing
and aggregating data in a deployed WSN application. Thus,
location awareness for the purpose of trust computation should
not require any additional resources.

8) Energy Considerations: Our trust system requires sensor
nodes to “overhear” messages from neighboring sensor nodes,
and also collect trust data from the neighboring sensor nodes.
We piggyback trust data on transmission and reception of
application messages wherever possible. The system may
be combined with other optimizations designed to reduce
the overhead of trust formulation. An example of one such
optimization is the MIT Leach protocol [21].

IV. EVALUATION OF THE TRUST SYSTEM

Using a custom discrete event simulator, “Trust-Sensim”,
we have simulated a cluster of nodes with the ability to
formulate trust between each other. Here we describe the
different aspects of this simulator.

Energy: Each node in the simulation has the energy con-
sumption characteristics for transmitting, receiving, and pro-
cessing data as well as sleeping of a Telos Rev B WSN node
(model TPR2420CA). Each node is powered by a simulated
energy capacity of two AA batteries. At the beginning of each
simulation, these batteries are given an initial charge normally
distributed around 2400 mAh (with a standard deviation of
200mAh).

Positioning: The nodes are positioned in relatively close
proximity so as to allow for overlap between their sensing
and communication ranges. This allows for all nodes to
overhear each other’s communications and build trust based on

their observations. For this simulation the nodes are statically
positioned 5 meters apart in a square grid of NxN nodes that
act as a cluster of nodes. We simulate cluster sizes of 2x2,
3x3, 4x4 and 5x5 nodes. The 5x5 cluster having 25 nodes and
an edge length of 25 meters. Nodes are aware of each other’s
identities and positions.

Simulation Events: As in the MIT Leach protocol [21]
each node is assigned TDMA time slots for communication
with the cluster lead during each round of sensing. For each
round of sensing, each node: A) Wakes up on its assigned slot.
B) Senses the current temperature and estimated remaining
battery charge. C) Transmits the readings to the current cluster
lead. D) Receives an ACK message back from the cluster lead
which may include system management information such as
the identity of the next cluster lead. E) Sleeps until the next
round.

At the end of each round the cluster-lead has the responsibil-
ity of doing a single high power transmission of the aggregated
results to the base station. Any node that disagrees with the
aggregated results can do its own high power transmission to
the base station. For this simulation the round period was 2
hours. Each cluster lead serves for a total of 25 rounds (50
hours) before a new cluster lead is chosen. During the final
round of a cluster lead’s tenure, the cluster lead advertises to
all of the system nodes the node identify which will serve as
the next cluster lead; which is the node with the most available
remaining energy. The simulation ends when any node in the
system is fully depleted of its energy capacity.

Trust formulation: Each node can enter a mode called
“neighborhood watch mode” which causes a node to first wake
up at the very beginning of each round of sensing and listen on
the radio for transmission of all other nodes. After overhearing
the sensing data transmission of other nodes, the node will
aggregate the data and transmit the aggregation result to the
cluster lead (and any other listening nodes). A node will enter
the low-power sleep mode at the very end of the “round”
after all other nodes have concluded their aggregated data
transmissions.

Neighborhood watch mode allows the system to act in
a fully redundant manner. All nodes not only sense and
transmit the current cluster lead but they also monitor each
other’s sensing and aggregation behavior and transmit their
own aggregation result to the current cluster lead. Each node
also has the ability to enter the “trust formulation mode” which
adds the following actions onto the “neighborhood watch
mode”.

1) Evaluate the sensor readings, data aggregation results
and trust experiences overheard from other nodes, based
on this evaluation, add new experiences to the local
cache of trust experiences.

2) Communicate highly weighted experiences from the
local experience cache to neighbors that may be listening
via piggy-backing trust experiences on top of sensor
reading transmissions to that node acting as the current
cluster lead.

3) Probabilistically sleep and skip one or more sensing
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Fig. 3. Effect of Link Loss on Startup Trust Level
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Fig. 4. Effect of Link Loss on Startup Trust Confidence Interval Width

rounds based on each node’s trust in the current cluster
lead and its own neighbors.

On initial system startup no trust exists between nodes. As
nodes interact with each other trust is formed. Figures 3 and
4 show the effect of varying levels of link loss on the trust
formation process. High levels of link loss prevent narrow
confidence intervals from forming and delay, though they do
not prevent, the formation of a high trust value.

Nodes that are able to dedicate more memory resources to
the formation of trust are able to achieve narrower confidence
intervals as shown in Figure 5. There exists a tradeoff to the
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amount of memory dedicated to the formation of trust and the
level of trust achievable (and therefore the life expectancy of
a network that uses dynamic redundancy).

Findings

Though building trust requires more memory and compu-
tational resources than the neighborhood watch mode alone
(due to the trust cache and trust formulation processing), the
potential is created for dynamically sleeping through sensing
rounds based on current trust in other system nodes. Thus
with building trust the potential is created to save energy and
extend the life span of the sensor network. We first establish
a baseline by comparing three different systems: A) One with
no redundancy and neighbor monitoring. In this case, nodes
perform only their own duties and never attempt to overhear
or monitor the communications of other nodes including the
aggregation function performed by the base station. B) A
system with full redundancy where all nodes monitor the
communications and actions of all other nodes. C) A system
with dynamic redundancy based on current levels of trust
between nodes. In this simulation we allow each node to have a
relatively large trust cache (1000 entries). Figure 6 shows that
the achievable life expectancy of a system with trust enabled
is well higher than a statically redundant system without trust.
We ran the simulator varying the number of nodes in the
system as well as the amount of memory dedicated to the trust
cache in each system. Figure 7 shows the change in expected
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minimum life of the system (in hours) as the amount of
memory available to the trust cache on each node is increased.
We find that full redundancy within larger networks requires a
considerably higher amount of memory on each node in order
to establish trust among nodes. Dedicating a relatively small
amount of memory to each node can produce a significant
improvement in the life expectancy of the system. As with any
typical cache however, there are diminishing returns associated
with adding memory to the trust cache on each node. The
simulator was also used to test the reaction time for injecting
node failures into the system. At approximately 120 hours into
the simulation, after trust had been established between system
nodes, a sensor failure on one of the nodes was simulated.
Figure 8 shows the time required for the system to react
(the confidence interval to widen) when a node fails. This
graph represents the average trust confidence interval width
in the failed node among all other nodes in the system. It is
interesting to note that larger trust caches on each node are able
to maintain narrower confidence intervals in the event of node
failure. This is because with larger caches, a higher number
of new experiences are accepted into the cache and usable
in calculating trust. Though not shown here, the cluster lead
is able to react more quickly than other nodes in the system
given that it is awake and thus has one of the first available
opportunities to detect node failure. Other nodes in the system
that are sleeping at the time of a node failure are unable
to detect the node misbehavior until they wake up and are
informed by the cluster lead (or their neighbors). It takes more
time for the entire system to react with a higher numbers of
sleeping nodes. The node with the failed sensor itself may have
been sleeping during some of these hours delaying detection
by neighbors until it wakes up. A future enhancement to the
system might be to assign higher weights to experiences where
nodes behavior changes rather than give the same weight to
all new experiences. Such a change would assist in drawing
the attention to sudden changes in behavior.

V. CONCLUSIONS AND FUTURE WORK

We presented a new distributed approach that establishes
reputation-based trust among sensor nodes in order to identify
sensor node misbehavior, minimize their impact on applica-

tions and maximize energy conservation. We demonstrated the
benefits of our approach using extensive simulations. However,
we have only tested simple node failures and link loss levels.
We plan on investigating the responsiveness of the trust model
to malicious misbehavior including both external attackers and
existing nodes that have been compromised. We also plan on
experimenting with node mobility.

REFERENCES

[1] A. Perrig, J. Stankovic, and D. Wagner, “Security in wireless sensor
networks,” Communications of the ACM, vol. 47, no. 6, pp. 53–57, June
2004.

[2] J. Golbeck and J. Hendler, “Inferring reputation on the semantic web,”
2004, http://www.mindswap.org/papers/GolbeckWWW04.pdf.

[3] V. Cahill, E. Gray, J.-M. Seigneur, C. D. Jensen, Y. Chen, B. Shand,
N. Dimmock, A. Twigg, J. Bacon, C. English, W. Wagealla, S. Terzis,
P. Nixon, G. di Marzo Serugendo, C. Bryce, M. Carbone, K. Krukow,
and M. Nielsen, “Using trust for secure collaboration in uncertain
environments,” Pervasive Computing, vol. 2, pp. 52–61, 2003.

[4] M. Sathyanarayanan, “Caching trust rather than content,” Operating
Systems Review, vol. 34, no. 4, pp. 32–33, 2000. [Online]. Available:
citeseer.ist.psu.edu/satyanarayanan00caching.html

[5] E. Gray, J. Seigneur, Y. Chen, and C. Jensen, “Trust propagation in
small worlds,” in Proceedings of the First International Conference on
Trust Management (iTrust2003), 2003. [Online]. Available: citeseer.ist.
psu.edu/gray03trust.html

[6] S. Ganeriwal and M. Srivastava, “Reputation-based framework for high
integrity sensor networks,” in Proceedings of the 2nd ACM workshop
on Security of ad hoc and sensor networks, 2004.

[7] R. Chen and W. Yeager, “Poblano: A distributed trust model for
peer-to-peer networks,” Sun Microsystems Technical Paper, 2000,
http://www.jxta.org/docs/trust.pdf.

[8] G. Theodorakopoulos and J. S. Baras, “On trust models and trust
evaluation metrics for ad hoc networks,” IEEE Journal on Selected Areas
in Communications, vol. 24, no. 2, pp. 318–328, February 2006.

[9] A. Srinivasan, J. Teitelbaum, and J. Wu, “Drbts: Distributed reputation-
based beacon trust system.” in DASC, 2006, pp. 277–283.

[10] Y. L. Sun, W. Yu, Z. Han, and K. Lui, “Information theoretic framework
of trust modeling and evaluation for ad hoc networks,” Selected Areas
in Communications, IEEE Journal on, vol. 24, pp. 305–317, 2006.

[11] M. Krasniewski, P. Varadharajan, B. Rabeler, S. Bagchi, and Y. C. Hu,
“Tibfit: Trust index based fault tolerance for arbitrary data faults in
sensor networks,” dsn, vol. 00, pp. 672–681, 2005.

[12] C. Karlof, N. Sastry, and D. Wagner, “Tinysec: A link layer security
architecture for wireless sensor networks,” in Proceedings of Sensys
2004, November 2004.

[13] B. Parno, A. Perrig, and V. Gligor, “Distributed detection of node
replication attacks in sensor networks,” in IEEE Computer Society
Symposium on Security and Privacy, May 2005.

[14] J. McCune, E. Shi, A. Perrig, and M. Reiter, “Detection of denial-
of-message attacks on sensor network broadcasts,” in IEEE Computer
Society Symposium on Security and Privacy, May 2005.

[15] N. G. Zinaida Benenson and O. Raivio, “Realizing robust user authen-
tication in sensor networks,” in RealWSN, 2005.

[16] V. Gupta, M. Millard, S. Fung, Y. Zhu, N. Gura, H. Eberle, and S. C.
Shantz, “Sizzle: A standards-based end-to-end security architecture for
the embedded internet (best paper),” in PerCom, 2005, pp. 247–256.

[17] A. Law and W. Kelton, “Simulation modeling and analysis,” in McGraw
Hill Series in Industrial Engineering and Management Science, 2000.

[18] D. Krouse and C. Withers, “A visual basic program giving weighted
confidence intervals for mean and variance,” Industrial Research Limited
Report 1581, June 2004.

[19] J. M. Bland and S. Kerry, “Weighted comparison of means,” BMJ, 1998.
[20] L. Lazos and R. Poovendran, “Serloc: Robust localization for wireless

sensor networks,” ACM Trans. Sen. Netw., vol. 1, no. 1, pp. 73–100,
2005.

[21] M. Handy, M. Haase, and D. Timmermann, “Low energy
adaptive clustering hierarchy with deterministic cluster-head selection,”
Proceedings of IEEE International Conference on Mobile and Wireless
Communications Networks, Stockholm, 2002., 2002. [Online]. Available:
citeseer.ist.psu.edu/handy02low.html


