
On Implementing Security at the Transport Layer
Swaminathan Pichumani

Juniper Networks
spichumani@juniper.net

Sneha Kumar Kasera
School of Computing, University of Utah

kasera@cs.utah.edu

Abstract— We design a framework that implements security
at the TCP layer to meet the necessity for a practical and truly
end-to-end security solution. We call our framework TCPsec.
TCPsec is a security extension to TCP and implemented in
the kernel. Applications may use TCPsec through regular TCP
sockets by setting special socket options. TCPsec uses a Secure
Socket Layer (SSL)-like handshake to set up a secure session. It is
interoperable with Network Address Translators. We implement
TCPsec in the FreeBSD 4.7 kernel and evaluate its performance.
Our implementation and evaluation show that TCPsec incurs
only a modest overhead as compared to TCP and performs
competitively with SSL. We also provide a formal verification
of our protocol state machine.

I. INTRODUCTION

Due to the dependence of many important and sometimes
critical applications on networked computers, network security
has become an indispensable requirement. Today, a broad
spectrum of security solutions is available for the Internet at
different network protocol layers. Layering provides one of
the primary dimensions used to classify protocols and defining
their functionality and limitations. Security protocols can be
designed to protect data at different layers of the protocol stack
starting from the application layer to the link layer. Secure
Socket Layer (SSL) [1] or Transport Layer Security(TLS) [2]1

and Internet Protocol Security (IPsec) [3] are amongst the
most popular and widely-deployed security protocols. Both
of these protocols have important inherent shortcomings due
to their location in the network protocol stack. Although SSL
is called a transport layer protocol, it actually runs as a user-
level library above TCP. Since SSL operates at a layer above
TCP, it cannot authenticate the TCP header. Unprotected TCP
header opens room for several denial-of-service attacks due
to the possibility of bogus TCP packet injection [4]. These
include the data injection attack, the blind reset attack using
the RST bit, and the blind reset attack using the SYN bit.

In order to understand the seriousness of the data injection
attacks on SSL, we conduct experiments where an 802.11
(wireless LAN) web client communicates with a web server
in the wired network. In our experiments, we use SSL (https)
sessions between the client and the server. We construct an
attacker program that runs on an attacker node in the same
wireless LAN as the web client. This attacker program first
sniffs TCP packets and then spoofs the client IP address and
injects its own fake TCP packets with appropriate sequence

1Except for a few differences, SSL and TLS protocols are very similar
in their design and implementation. Hence, in our work we use SSL as the
reference protocol.

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80

%
Su

cc
es

sf
ul

 A
tta

ck
s

HTTPS Transfer Size (Kbytes)

Fig. 1. Percent of successful attacks vs file size.

numbers and checksums. These fake packets are accepted by
the TCP layer but not at the SSL layer by the web server,
causing the SSL layer to discard established connections. We
run ten SSL sessions each for a specific file size. Figure 1
shows how the percent of successful attacks varies with the
https file transfer size. We observe that for file sizes beyond
50 Kbytes, the chance of successfully attacking the https web
sessions is very high. This is because for 50 Kbytes or larger
file sizes, the attacker program has enough time to successfully
create a fake TCP packet with a valid sequence number. Our
experiments prove that it is very easy to attack SSL in wireless
networks and raise a serious concern about its use2.

On the other hand, IPsec provides end-to-end security at
the network layer allowing all applications running on top
of IP to communicate securely. In the commonly deployed
Encapsulating Security Payload (ESP) mode [5], IPsec en-
crypts and/or authenticates the entire transport layer payload.
However, IPsec suffers from two limitations. First, IPsec ex-
changes a large number of messages for establishing a security
association among two end-points (the numbers are provided
in Section V-E). Hence it suffers from a high overhead for
short to moderate-lived associations among end-points. IPsec
is more suitable for long lived associations among two end-
points (e.g., a secure virtual private network tunnel setup)
so that the initial setup cost is amortized over a reasonably
long period of communication and possibly over multiple TCP
connections between the end-points. Second, its design has
serious implications when firewalls are used to filter unwanted
traffic between end-points. When the entire payload is only

2Additional link layer security could help thwart these attacks but then it
must be implemented on every vulnerable link in the end-to-end path.

authenticated and not encrypted, firewalls can effectively per-
form their filtering functions but data privacy is compromised.
When the entire payload is encrypted, the firewalls cannot view
the transport protocol headers that it requires to perform its
filtering functions. This problem has led to many organizations
deploying split security using IPsec instead of complete end-
to-end security. Split security is implemented by terminating
IPsec connections at gateways or firewalls. the employee to
secure all her transactions on the public Internet. We envision
that in the future, users, especially wireless users will be able
to request firewall services from service providers. The split
security model where all the data is visible to the firewalls
will be unacceptable to these users. It is possible to use
unencrypted but authenticated fields in the IPsec headers [3]
to implement some firewall rules but such solutions are very
limited in scope. It is also possible to use SSL over split
IPsec but that would be inefficient due to overheads of both
these approaches. Recently, there have been a few proposals
to make IPsec more firewall-friendly [6]–[8]. However, these
approaches still suffer from the message complexity of IPsec.

In this paper, we design a framework that efficiently im-
plements security at the TCP layer to meet the necessity
for a practical, and truly end-to-end security solution. Our
framework, that we call TCPsec, provides a light-weight
and firewall-friendly alternative to SSL and IPsec. There are
several advantages of building security at the TCP layer.
First, TCP already has a handshake mechanism for connection
setup. We extend this handshake mechanism to allow for key
exchange and security parameter negotiation similar to the
one implemented in SSL. Unlike IPsec [9] no separate key
exchange is needed. Second, when an application chooses
to use TCPsec security, the TCP headers/payload could be
flexibly encrypted on a per connection basis. Third and
importantly, security at TCP leaves the control with end-
points only and thus provides end-to-end security. Applications
may use TCPsec through regular TCP sockets by setting
special socket options. TCPsec is backward compatible with
TCP. In the absence of TCPsec, regular TCP is used for
communication. TCPsec is also interoperable with Network
Address Translators (NATs) [10]. The availability of TCPsec
at the peer node and the presence of NATs are detected during
the handshake.

The use of TCPsec will also require both application and
kernel-level changes. In order to address this concern, we ex-
plore two approaches - one that uses application layer proxies
to avoid any changes in the applications and another that uses a
kernel sandboxing framework, Self-spreading Transport (STP)
[11], to ease kernel upgrading. The STP framework allows
us to ship, compile, and load TCPsec at a remote host. We
implement TCPsec in the FreeBSD 4.7 kernel and evaluate its
performance. Our implementation and evaluation show that
TCPsec incurs only a modest overhead as compared to TCP
and performs competitively with SSL.

The rest of the paper is organized as follows: We de-
scribe the design of our TCPsec framework in Section II.
In Section III, we provide some implementation details of

TCPsec in FreeBSD. We discuss the important deployment
problems associated with TCPsec and explain our solutions in
Section IV. In Section V, we evaluate our TCPsec implemen-
tation. In Section VI, we formally verify the correctness of the
enhancements made to the TCP protocol. In Section VII, we
survey the related work and contrast it with TCPsec. Finally,
we conclude the paper in Section VIII.

II. PROTOCOL DESIGN

This section outlines the key design features of TCPsec
protocol. The primary factors that influence the design of
TCPsec are:
Security and Efficiency: The primary goal of TCPsec is to
provide security to application data in an efficient manner with
low overheads.
Use of well-established security design principles: We aim to
use well-established security design principles from the widely
deployed protocols such as SSL and IPsec.
Deployment issues: TCPsec’s design is also influenced by the
requirement to support easy deployment of the protocol and
interoperability with regular TCP.

TCPsec provides the three basic security functions: authen-
tication, message integrity, and confidentiality. Like most other
security protocols [1], [3], it implements these functions in two
different phases: the handshake phase during which the nodes
authenticate the identity of each other and establish a secure
session by exchanging parameters, and the data exchange
phase during which the application data is securely transmitted
using the keys negotiated in the handshake phase. The secure
session ends when the TCP connection is closed. We now
describe these two phases.

A. Handshake phase

We extend TCP’s three-way handshake to negotiate and
carry the security parameters. The options field in the TCP
header provides the first choice for transmitting the security
parameters. However, TCP restricts the maximum size of an
option to 40 bytes, while the parameters exchanged during
the handshake, especially the certificates, can be much larger
than the size allowed by TCP options. Hence, we introduce
TCPsec header and TCPsec options fields to carry the TCPsec
parameters. An entire TCPsec packet is shown in Figure 4. The
TCPsec options are similar in format to the TCP options except
for the maximum length allowed in each option. The TCPsec
options are preceeded by a TCPsec header. The TCPsec header
includes the data offset, which gives the offset to user data
from the TCPsec header in 32-bit words, and the frag id,
which gives the sequence number of the current handshake
fragment, as explained in Section II-A.1. The sequence of
TCPsec messages, along with their parameters are explained
below.
(1) In the first SYN packet to the server, the client informs the
availability of TCPsec by setting a special SEC flag in the TCP
header3. The TCPsec options sent in the SYN message are: (i)

3When either of the two sides does not wish to use TCPsec, the handshake
falls back to that of regular TCP. The details are provided in [12].

client random number, used in the generation of session keys,
(ii) crypto set, which consists of crypto algorithms supported
by the client.
(2) In its reply, the SYN+ACK message, the server includes
the following parameters: (i) session id to uniquely identify a
session, (ii) server certificate to prove its identity to the client,
(iii) server random number used in the key generation, and
(iv) crypto spec, which contains the set of crypto algorithms
chosen by the server from the crypto set provided by the client.
(3) On receiving the SYN+ACK message, the client authen-
ticates the server using the server’s certificate. The client
generates a master key for the new session and encrypts it
using the server’s public key. It sends the ACK message
with the following parameters: (i) session id, (ii) an optional
client certificate to authenticate itself to the server, (iii) en-
crypted master key and (iv) handshake message digest. The
handshake message digest is a keyed digest of all the messages
received and sent by the client including the current ACK
message. This digest is sent to the server, which in turn verifies
the received digest by comparing it with its own digest of all
the handshake messages sent and received.
(4) The fourth and additional message added to the TCP
handshake is an ACK message from the server to acknowledge
the receipt of the parameters sent by the client to the server
in the previous message. In addition, this message also carries
a handshake digest from the server to the client. This digest
prevents any impersonation of the server, since the right digest
can be generated only by the server.

1) Fragmentation: Some of the TCPsec options, especially
those containing the certificates, could make the TCP segment
size exceed the maximum allowed to prevent IP fragmenta-
tion [13]. This introduces the necessity for fragmenting the
handshake messages that carry certificates at the TCPsec layer.
In order to facilitate reconstruction of fragments at the TCPsec
receiver, we use two fields - one from the TCP header flags
and another from the TCPsec header.
(1) frag id, which is a part of the TCPsec header, is used to
correctly order the received fragments. The frag id indicates
the sequence number (not the TCP sequence number) of a
fragment, starting from 0 for the first fragment, 1 for the
second fragment, and so on.
(2) In order to identify the last fragments of a particular
handshake message, we introduce an additional TCP header
flag called the FRG flag. The sender sets the FRG flag to
indicate the presence of more fragments. The FRG is reset in
the final fragment of a handshake message.

Buffering of fragments, for reconstruction of handshake
messages, opens room for a potential denial-of-service attack:
an attacker can send a large number of bogus fragments and
easily overflow the victim’s memory. In order to prevent this
attack, we restrict the maximum number of fragments. An
handshake flow with fragmentation is shown in Figure 2.

2) TCP Finite State Machine: We make two important
changes to the TCP three-way handshake to set up a TCPsec
session. First, we add an additional message to the handshake
phase and second, we allow fragmentation of handshake

Client Server

SYN+SEC

FRG

SYN+ACK+SEC+FRG

FRG

sess_id, [client_cert], {master_key}, hs_digest
ACK+FRG

sess_id, serv_rand, serv_cert, cyrpto_spec

client_rand, crypto_set

ACK
hs_digest

Fig. 2. TCPsec handshake messages.

messages. These changes made to the TCP handshake result
in changes to the TCP Finite State Machine (FSM). The new
TCP FSM is shown in Figure 3. The client and the server start

Fig. 3. Modified TCP finite state machine.

from the CLOSED state. The server goes to the LISTEN state
on a passive open and starts listening for connection requests.
(1) On an active open, the client sends a SYN and enters the
SYN SENT state.
(2) The server (in the LISTEN state) on receiving the SYN,
replies with the SYN+ACK and enters the SYN RECEIVED
state. The server’s reply can potentially be fragmented across
multiple segments depending on the total option size. The
server sends all the fragments at once before entering the
SYN RECEIVED state.

(3) The client (in the SYN SENT state) receives the fragments
from the server and stays in the SYN SENT state as long
as there are more fragments to receive. On receiving the last
fragment in the SYN SENT state, the client sends an ACK.
Similar to the SYN+ACK from the server, the client’s ACK
can be fragmented. The client sends all the fragments and
moves to a new state called ACK SENT. In the ACK SENT
state, the client waits for an acknowledgment from the server
for the security parameters it sent in its ACK.
(4) The server receives the ACK fragments from the client in
the SYN RECEIVED state. On receiving the final fragment,
the server responds with an ACK and moves to the ESTAB-
LISHED state.
(5) The client receives the final ACK from the server and
moves to the ESTABLISHED state.

This completes the handshake process in TCPsec and a
secure session is setup. The connection teardown sequence
remain the same except that these messages are cryptograph-
ically protected in TCPsec.

B. Data exchange phase

The user data is securely transmitted during the data ex-
change phase of a session. Integrity protection is provided by
generating a keyed digest of the data using an agreed upon
algorithm and confidentiality is provided by encrypting the
data using a symmetric key algorithm. In order to provide
encryption and message authentication, a set of session param-
eters are maintained. These session parameters are initialized
during the handshake phase and used to secure data exchange.

Similar to SSL and IPsec, security associations in TCPsec
are unidirectional. Hence, TCPsec uses separate read and write
keys for encryption and message authentication operations
in each direction of communication. A set of four keys is
generated from the master key for each session. Two of the
keys are used for encryption (read and write encryption keys)
and two other keys are generated for message integrity (read
and write authentication keys).

Encryption and integrity protection are independent opera-
tions and can be done in any order. However, [14] explains
vulnerabilities associated with weak algorithms when encryp-
tion is performed after authentication. Hence in TCPsec, we
generate the digest after the encryption process. This method
also allows us to authenticate a message before decrypting it
thereby avoiding the overhead of decrypting bogus messages.

In TCPsec, we allow a flexible encryption of the TCP
segment (see Figure 4). With our flexible encryption scheme,
although the TCP payload (user data) is always encrypted,
an application can decide to encrypt only a part of the TCP
header. It is mandatory that the port numbers of the TCP
header are left unencrypted for identifying the TCP data
structures and the destination application. Other than the port
numbers, an application can choose to encrypt any part of
the TCP header. By default, the header is left unencrypted
and the payload alone is encrypted. The other details of
the data handshake phase including the choice of explicit
versus explicit initialization vectors, and the placement of

authenticated

src
port port

dst
TCP header

rest of
options
TCP

header
TCPsec TCPsec

options Payload

variable encryption

Fig. 4. TCPsec packet format with the TCPsec header and options.

the message authentication code are described in the detailed
version of this paper [12].

C. NAT interoperability

Network Address Translation (NAT) devices are widely
used today as an external interface to private Intranets, in-
cluding enterprise networks and home networks, to save IP
addresses. To provide NAT interoperability, we include a new
option in the TCPsec handshake called the NAT option. In
the first SYN message of TCPsec, the client sends the NAT
option containing the port numbers and the source IP address
it uses for the connection as part of the TCPsec options. In
the presence of a NAT along the path to the server, the port
numbers and the IP address are modified. The TCPsec server
can verify this by comparing the values it receives in the packet
with those in the option. When a NAT is detected, the server
includes the NAT option in its reply with the source address
and port number it uses. After the exchange of NAT option by
the client and the server, the port numbers and the IP address
received in the options field replace the values present in the
TCP header for message digest calculation and verification.
This scheme is similar to the process described in [15] for
IPsec interoperability with NATs.

III. IMPLEMENTATION

We implement the TCPsec protocol in the FreeBSD kernel
version 4.7. Most of our code is a part of TCP’s input and
output routines. For the cryptographic functionality, we port
an existing crypto-library [16] to the kernel. This crypto code
forms a separate kernel module that must be loaded in the
kernel when TCPsec is enabled.

A. Socket library

We enhance the socket library to allow applications to
enable TCPsec and configure security policies on a per-socket
basis. Applications can control the parameters through the
use of the setsockopt() function call. Table I outlines the
different socket options available for applications. However,

Socket Option Purpose Default value
TCPSEC TCPsec socket NOT ENABLED
ENC ALGO encryption algorithm 3DES
MD ALGO message digest MD5

algorithm
ACCPT TCP accept non-TCPsec DONT ACCPT

connections (server)

TABLE I
NEW SOCKET OPTIONS TO SET TCPSEC PARAMETERS.

an application’s choice can be overridden by enabling global

security policies. Global security policies are set by a sys-
tem administrator. The security policy defines the choices
of security parameters such as encryption and authentication
algorithms and enforces all applications to use them. When the
global parameters are set, individual choices of applications
are ignored.

B. Kernel data structures

The TCPsec session parameters are stored in a data structure
called the TCPsec control block, which can be accessed from
the TCP control block of a TCP connection. A TCPsec control
block is allocated for each secure connection. However, to
prevent the SYN flood attacks on the server side, as in the case
of the TCP control block, the TCPsec control block is allocated
only after the client’s acknowledgment (third message in the
handshake phase) is received at the server. In FreeBSD, the
syncache [17] data structure is used to store information about
initiated connection requests until a control block is allocated.
The syncache is implemented as a hash table and a maximum
limit is imposed on the total memory that can be used by
the syncache. In TCPsec, we use the syncache to also store
the security parameters exchanged before the TCPsec control
block is created for the connection. This increases the size
of the syncache data structure and hence the maximum size
allocated for the syncache must be increased to support the
same number of simultaneous connection attempts.

C. Handshake Digest

One of the security parameters exchanged during the hand-
shake is the digest of all handshake messages as discussed
in Section II-A. This digest is computed over all the hand-
shake messages and the authentication keys. However, the
authentication keys are not available until the master secret
is exchanged. In order to avoid the overhead of saving the
fragments exchanged during the handshake, which in turn
increases the risk of a denial-of-service flooding attack, we
compute the digest incrementally similar to SSL. The hand-
shake digest is calculated as:

MD5(MD5(handshakemessages) + auth key + const)

where, const = 0x1122 for server and const = 0x2233 for
client. These constants are the same as those used in SSL’s
handshake digest calculation. When a fragment is received
or sent, the digest’s context is updated. After the keys are
generated, the final handshake digest is generated as an MD5
digest of the authentication key concatenated to the digest
of the messages. This method is a modified version of the
HMAC [18] digest calculation.

IV. DEPLOYMENT

Ease of deployment significantly influences the success of
a protocol. While TCPsec overcomes the drawbacks of SSL
and IPsec, it has its associated deployment difficulties that
discourage the deployment of the framework. In this section,
we discuss these issues and briefly describe our solutions to
make TCPsec deployment feasible.

TCPsec’s primary deployment problems are two fold.
First, applications must be changed to enable TCPsec. These
changes involve setting the appropriate socket options defined
in Section III (unless system wide security is enforced for
all applications). Second, kernel upgrade and recompilation
are required at both the communicating nodes since TCPsec
is part of the kernel. In contrast, SSL being an application
layer protocol, does not require kernel upgrade and IPsec does
not require application changes. In order to support TCPsec
deployment, we implement the following two solutions.

A. Application Proxies

To allow existing applications to use TCPsec without requir-
ing modifications, we develop application proxies, one each for
the client and the server. These proxies run as daemons co-
located on the same machine with the corresponding server or
client application4. A proxy communicates with the unchanged
application using TCP. However, the client and server proxies
communicate with each other using TCPsec. We derive the
use of application proxies from S-Tunnel [19], which uses
proxies to allow applications to use SSL without requiring
any modification in the applications themselves. The details
related to the use of application level proxies for deploying
TCPsec are available from [12].

B. STP Sandboxing Mechanism

Since TCPsec is a part of the kernel, deploying TCPsec re-
quires kernel changes and recompilation. Like most other TCP
versions, TCPsec must be deployed at both the communicating
nodes to provide security. To simplify the kernel deployment
of TCPsec, we use the Self-spreading Transport Protocol [11]
sandboxing mechanism.

1) STP overview: STP provides a system in which the com-
municating end hosts use untrusted mobile code to remotely
upgrade each other with the transport protocols that they use to
communicate. With the use of STP framework, we can avoid
kernel recompilation since modules can be dynamically loaded
using STP’s trusted compiler and loader. Figure 5 shows
the important architectural components of STP. The central
component of the framework is the STP sandbox, which
provides a restricted and resource safe environment for mobile
transport protocols. The sandbox implements a set of APIs,
which provide transports constrained access to other layers in
the system. Similarly the network layer and the socket layer
interact with the transport protocols through the STP sandbox.
Finally, the applications interact with the STP sandbox and
the transports through existing socket interface and by setting
special socket options. The policy manager daemon is used
to resolve conflicts during connection establishment. These
policy managers select a protocol to be used for a connection.
When a new protocol code is shipped from one node to
another, the trusted tool compiler generates a module on the
remote node. This kernel module is loaded by a trusted loader.

4End-to-end security is compromised when the proxies are run on a different
machine than the application, similar to the split IPsec model.

Fig. 5. Architecture of the STP framework.

2) STP handshake: STP enhances TCP’s 3-way handshake
to indicate each end-host’s choice of the transport protocol in
the TCP option. This handshake process also initiates out-of-
band shipping of transport code when the selected transport
is absent in a host. Consider the handshake scenario shown
in Figure 6. Let node A use TCPsec protocol and node B
use regular TCP. When a TCP connection is initiated by A

B

B

A

A

2

3

1 (TCP)

CODE
SHIPPING

COMPILE+
LOAD TIME

(TCPsec)

TIME

C
O

N
N

EC
TI

O
N

S
B

ET
W

EE
N

 A
 A

N
D

 B

SYN

Data transfer

Ship TCPsec
SYN+ACK,

ACK

Data transfer

ACKSYN

Use TCPsec
SYN+ACK,

Fig. 6. An STP handshake example.

(connection 1), it also advertises its intent to use TCPsec as
the transport protocol. Since node B does not have TCPsec, it
replies back requesting node A to ship the code for TCPsec.
The initiated connection falls back to the default TCP protocol
since TCPsec is not available in node B. However, node A
initiates an out-of-band shipping of TCPsec code to node
B (connection 2). Using STP’s trusted compiler and loader,
TCPsec is deployed at node B. Once the deployment is
complete, a future connection between node A and node B
(connection 3) can use TCPsec.

3) TCPsec on the STP framework: We implement TCPsec
on the STP framework. Our implementation involves porting
TCPsec’s hard-wired implementation from the kernel to an
STP-based transport. STP transports fall into two distinct
categories:

• XTCP protocols: Protocols in this category use TCP-
compliant header and have TCP-like handshake.

• NTCP protocols: Protocols that differ from TCP in the
transport protocol header and its handshake mechanism.

As explained in Section IV-B.2, in addition to the negotia-
tion of protocol, the TCP connection parameters are exchanged
during the STP three-way handshake. Hence, XTCP class of
protocols can start data exchange right after the new protocol
is attached. However, NTCP and other non-TCP compliant
protocols must exchange their handshake parameters after the
STP handshake. TCPsec, though an extension to TCP, differs
significantly from TCP during the handshake phase. TCPsec
requires additional security parameters to be exchanged to set
up a secure session. Hence, TCPsec handshake options must
be exchanged after the completion of STP handshake. This
adds additional latency to the handshake phase. We call this
the NTCP implementation of TCPsec transport.

In order to decrease the handshake latency, we also im-
plement a different scheme by taking advantage of STP’s
handshake implementation. STP implementation sets the TCP
transport as the default protocol for the XTCP domain. During
the connection initiation, the domain is searched for the default
protocol and used for STP’s handshake. We extend this, by
searching through the XTCP domain to find if the requested
protocol has already been loaded. If the protocol is loaded, the
selected protocol is attached and its handshake is used instead
of the default protocol’s (TCP’s) handshake. Hence, TCPsec’s
handshake is overloaded to negotiate the protocol. We call this
the XTCP implementation of TCPsec.

V. EVALUATION

In this section, we present an evaluation of TCPsec. We
start by evaluating the security aspects of TCPsec followed by
its performance. Since TCPsec design is largely derived from
SSL, we compare the security of TCPsec with that of SSL.
For performance analysis, we first compare the performance
of TCPsec with TCP to illustrate the overhead incurred in pro-
viding security. Next, we compare the performance of TCPsec
with SSL to find how TCPsec competes with SSL. Last,
we evaluate the TCPsec protocol to understand the overhead
incurred when the STP framework is used for deployment.
We conduct all our experiments on the Emulab [20] network
testbed.

A. Security analysis

TCPsec’s security handshake is very similar to that of SSL.
Therefore, TCPsec’s security is comparable to that of SSL.
However, we note the following differences between SSL
and TCPsec. Unlike SSL, in TCPsec, the keyed message
digest is generated over the encrypted data. As shown in [14],
authentication after encryption provides a generically secure
solution as compared to the encryption after authentication.
SSL uses implicit sequence number to avoid replay attacks,
whereas TCPsec uses explicit sequence numbers. Sequence
numbers can be easily deduced by observing the data stream
and hence exposing the sequence number does not introduce
any security vulnerability. Hence, our use of explicit sequence
numbers is secure. Finally, SSL uses implicit IVs (initialization
vectors) derived from the cipher text of the previous message
while TCPsec uses explicit IVs. As explained in [21], explicit

Fig. 7. Throughput Comparison: TCP vs TCPsec vs SSL.

IVs are secure as compared to implicit IVs. TLS version 1.1
[22] uses explicit IV to overcome the problems associated with
implicit IV.

Though TCPsec is secure in its design, it introduces a se-
curity vulnerability due to the additional information stored in
the syncache. Recall from Section III-B that the syncache data
structure is used to store information about TCP connection
requests at the server side until control blocks are allocated.
As shown in Section III-B, memory allocated for the syncache
is restricted to a maximum value to avoid the SYN flooding
attack. Since the maximum size of the syncache is restricted,
the increase in the syncache entry size does not cause a
SYN flood attack. However, to support the same number
of outstanding connection request, the memory allocated to
the syncache must increase. Table II shows the number of
outstanding connections allowed for the default memory limit
of 15 KB and the memory bound required to support 500
simultaneous connections. Though the memory required by
syncache in TCPsec is almost double the memory required
in TCP, the actual value required to support large number of
simultaneous connection attempts is still low (124 KB).

TCP TCPsec
of conn mem limit # of conn mem limit

109 15 KB 60 15 KB

500 63.36 KB 500 123.5 KB

TABLE II
MAXIMUM # OF SIMULTANEOUS CONNECTION REQUESTS.

B. TCPsec vs TCP

In comparison to TCP, TCPsec incurs additional overhead
due to (i) the processing associated with the cryptographic
functions (ii) the extra protocol message during handshake,
and (iii) increased segment size for carrying security infor-
mation including TCPsec options, message digests, and IVs
(although the increase in segment size is ≈ 60% for ACKs,
it is less than 2% for 1500 byte packets). The first two
factors increase TCPsec’s handshake latency in comparison
to TCP. Due to space limitations, numerical results showing
this increase are presented in [12]. We evaluate the data
throughput performance of TCPsec by considering networks of
two FreeBSD machines separated by three different emulated
links. The characteristics of these links are presented in

Table III. To measure the throughput, a large file is transmitted

Link Bandwidth RTT Loss
N1 2 Mbps 100 ms 0.5%
N2 5 Mbps 50 ms 0.5%
N3 25 Mbps 50 ms 0%

TABLE III
CHARACTERISTICS OF EMULATED LINKS.

from the server to the client and the time taken for the
transfer is used in the throughput calculation. Figure 7 shows
our throughput measurements. As expected, the throughput
of TCPsec reduces, albeit by varying amounts, in all the
three networks. However, this reduction is not drastic, and
we believe that it could be traded for the security provided by
TCPsec.

C. TCPsec vs SSL
TCPsec incurs obvious overheads when compared to TCP

due to its additional security functions. For a fairer evaluation
of TCPsec, we compare its performance with SSL. We derive
most of TCPsec’s design from SSL and hence we choose
SSL as the reference protocol for performance comparisons.
We first measure the handshake latency of both TCPsec and
SSL on a network with two end hosts separated by a 5 Mbps
bandwidth link with 100 ms RTT and 0.5% loss rate. We plot
the results in Figure 8. In the handshake latency measurement,
we measure the time taken to complete the entire negotiation
to set up a secure session. In TCPsec this happens during the
4-way handshake whereas in SSL the time taken for session
set up includes TCP’s 3-way handshake and SSL’s handshake
as well. As expected, SSL’s handshake is significantly more
than TCPsec’s handshake.

To compare the data throughput of TCPsec and SSL, we
measure the data throughput of TCPsec and SSL on the three
different networks N1, N2, and N3. We show the results in
Figure 7. Since TCPsec and SSL involve the same set of
cryptographic operations during data exchange, we do not
expect their throughput to differ a lot. However, we find that
the throughput of TCPsec is slightly higher than SSL in N1
and N2 and surprisingly, about 30% higher in N3. Although
we believe that this throughput improvement is due to our
efficient implementation of TCPsec, we need to investigate
this result further.

D. TCPsec with STP
We calculate the throughput of TCPsec + STP on networks,

N1, N2, and N3, and compare it against the throughput of a
hard-wired native implementation of TCPsec. As seen from
the Figure 9, the throughput of TCPsec transport on STP
is roughly the same as throughput of the native implemen-
tation on all three network conditions. This indicates that
the throughput of TCPsec is not significantly reduced by the
overhead of the STP framework. Note that TCPsec throughput
is same for both the XTCP and the NTCP implementations as
they differ only in the handshake mechanism. Therefore we
do not make any distinction between the two implementations
in Figure 9.

Fig. 8. Handshake Latency Comparison: TCPsec vs SSL.

Fig. 9. Throughput Comparison: TCPsec transport in STP vs Native TCPsec.

E. TCPsec vs IPsec

IPsec uses the Internet Key Exchange (IKE) protocol for
setting up a security association, and for exchanging security
parameters between two end-points. IPsec uses other protocols
(e.g., ESP [5]) for data transfer. IKE involves two phases [23].
In the first phase, 3 (aggressive mode) or 6 (main mode)
messages, and in the second phase 3 additional messages are
exchanged between the two end-points. Further, when TCP
is used over IPsec, 3 more messages are exchanged for the
TCP handshake. Hence, when used in a single connection
application, IKE incurs a much higher message overhead (9
or 12 messages) and consequently, a much higher delay in
comparison to TCPsec (4 messages). However, in scenarios
where several application connections run over the same IPsec
security association, the extra overhead of IKE gets amortized
over these connections making IPsec more efficient for those
scenarios. We have not yet measured the in-kernel data transfer
performance of IPsec in the BSD kernel. However, we believe
that the performance numbers will be very similar to those of
TCPsec.

VI. FORMAL VERIFICATION

Formal verification methods allow us to prove the correct-
ness of protocols and also identify the flaws in their design
and implementation. We formally verify the correctness of our
TCPsec protocol by building on an existing work [24], which
verifies the behavior of TCP state machine. The TCPsec state
machine verification consists of the following two steps.

The first step involves the construction a model of the
TCPsec state machine using a formal language. We use

the CTL specification language to model the TCPsec state
machine. We modify the TCP model defined in [24] to
include fragmentation of handshake messages and the fourth
handshake message present in TCPsec. We define additional
variables to model fragments that can be lost or arrive out of
order and an additional state to include the fourth handshake
message. To illustrate the modeling of state transitions, we ex-
plain the transition from SYN SENT state to the ACK SENT
state. We model the rest of the transitions similarly. When
the connection is in the SYN-SENT state, processing of an
incoming segment consists of the following sub-steps.
1. If the ACK flag is set but the ACK is unacceptable, then
the fragment is dropped and the state remains the same.
2. If the RST flag is set and the ACK is acceptable, the
connection goes to the CLOSED state. 3. If the RST flag is
set and the ACK is acceptable, then the segment is dropped
and the state remains unchanged.
4. When all the fragments of the SYN+ACK are received
(when the frg ok is set) and the SYN+ACK flags are set
together in any of these fragments, then the state changes to
the ACK-SENT state.
5. When all the fragments of the SYN+ACK are received
(when the frg ok is set) and no fragment contains the
SYN+ACK flags set, then the connection moves to the
CLOSED state.
6. When a segment with SYN bits set is received, the state
changes to the SYN-RECEIVED state.
7. When all the fragments are not received the state remains
unchanged at SYN-SENT state.

The second step involves verifying the model using a model
checker tool. In our work, we use the NuSMV [25] model
checker to verify the state transitions in the TCPsec state
machine. Each state transition is verified using two rules: The
first rule verifies the liveness of the protocol5 and the second
rule verifies the specified state transition when the appropriate
message is received6. We present the two rules corresponding
to the transition from the LISTEN to the SYN RECEIVED
state below. Other rules are similar to those shown below.

SPEC EF(state = LISTEN & event = SEGMENT & !rst flag
& !ack flag & syn flag)

SPEC AG((state = LISTEN & event = SEGMENT &
!rst flag & !ack flag & syn flag) -> AX(state =

SYN-RECEIVED))

The first rule states that sometime during the connection setup,
the state will be LISTEN and a segment, with the RST and
the ACK flags reset and the SYN flags set, is received. The
second rule states that when the connection is in the LISTEN
state and a segment with the RST and the ACK flags reset and
the SYN flags set, is received then the state changes to SYN-
RECEIVED state. Other transitions in the finite state machines

5This is specified as an EF(conditions) rule. The EF rule states that there
exists some computational path leading to the ’conditions’ mentioned.

6This is specified as an AG(conditions -> AX(S)) rule. The AG & AX
rules state that all computational paths corresponding to the ’conditions’ lead
to the state ’S’.

have their corresponding rules.
We successfully verify all the transitions of the TCPsec state

machine and conclude that the TCPsec modifications do not
affect the correctness of the TCP finite state machine.

VII. RELATED WORK

We present a brief overview of some of the existing efforts
on implementing security at the transport layer [26]–[29]
and contrast them with our work on TCPsec. While Security
Protocol 4 [26] suggests a security framework model, it does
not define the exact implementation for any particular transport
protocol. [27] provides a very rudimentary implementation
suggestion of SP4 at the TCP layer. This implementation
suggests a separate key management protocol for setting up a
cryptographic association. SecureTCP [28] is based on the idea
of extending TCP to implement security. Among the existing
work, secureTCP is closest to TCPsec. However, secureTCP
provides only a basic framework for security. It fails to address
many important issues including fragmentation of handshake
messages to support exchange of large certificates, mutual
authentication of communicating nodes, key generation for
encryption and integrity protection, interfacing applications
with secureTCP, and very importantly, deployability. TCPsec
addresses all the drawbacks of secureTCP in our framework
and additionally provides thorough evaluation, NAT interoper-
ability, and an enhanced socket layer for applications to choose
security on a per-socket basis.

In another related work, TCP-MD5 option [29], the authors
provide a solution to protect the integrity of TCP data. How-
ever this scheme lacks important features such as key distribu-
tion mechanism, node authentication, and data confidentiality.
TCPsec provides a much richer functionality covering all of
key exchange, authentication, data confidentiality, and data
integrity. Some variants of IPsec, including ML-IPsec [8],
TF-ESP [6], and ESVP [7], that allow exposure of transport
headers have also been proposed. However, these variants
incur high message overhead and high setup delay compared
to TCPsec when an IPsec security association is established
for every application connection.

VIII. CONCLUSION

We have built a comprehensive security framework, TCPsec,
at the TCP layer that provides a light-weight alternative to
SSL and IPsec while overcoming their limitations. We have a
prototype implementation of TCPsec in the FreeBSD kernel
4.7. We have developed a simple STunnel-like interface for
applications to operate with TCPsec unchanged. To support
easy upgrade of the kernel, we have implemented TCPsec in
the STP framework, which provides a sandboxing mechanism
to remotely upgrade transport protocols through code shipping.
TCPsec is a working system and our evaluation shows that
TCPsec provides an efficient security solution.

ACKNOWLEDGMENT

We thank Professor Jay Lepreau and other members of the
Flux lab for helping us with the Emulab and STP software.

We would also like to thank Sid Ramesh, Jun Cheol Park,
Eun Yong Kang and Matt Probst for their effort in evaluating
the https transfer attacks and the implementation of TCPsec
proxies.

REFERENCES

[1] A. Freier, P. Karlton, and P. Kocher, “The SSL Protocol Version 3.0,”
IETF Internet Draft: draft-freier-ssl-version3-02.txt, March 1996.

[2] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,” RFC 2246,
January 1999.

[3] S. Kent and R. Atkinson, “Security Architecture for the Internet Proto-
col,” RFC 2401, November 1998.

[4] M. Dalal, “Transmission Control Protocol security considerations,” IETF
Internet Draft: draft-ietf-tcpm-tcpsecure-02.txt, November 2004.

[5] S. Kent and R. Atkinson, “IP Encapsulating Security Payload (ESP),”
RFC 2406, November 1998.

[6] S. Bellovin, “Transport-friendly esp (or layer violation for fun and
profit),” ser. IETF-44 TF-ESP BOF, March 1999.

[7] S. Kasera, S. Mizikovsky, G. Sundaram, and T. Woo, “On securely
enabling intermediary-based services and performance enhancements for
wireless mobile users,” in ACM WiSe, 2003.

[8] Y. Zhang and B. Singh, “A Multi-Layer IPsec Protocol,” in Proceedings
of 9th USENIX Security Symposium, August 2000.

[9] D. Harkins and D. Carrel, “The Internet Key Exchange (IKE),” RFC
2409, November 1998.

[10] K. Egevang and P. Francis, “The IP Network Address Translator (NAT),”
RFC 1631, May 1994.

[11] P. Patel et al, “Upgrading Transport Protocol using Untrusted Mobile
Code,” in Proceedings of SOSP, Bolton Landing, NY, October 2003.

[12] S. Pichumani and S. Kasera, “Tcpsec: A Transport Layer Security
Framework,” University of Utah,” Masters Thesis, 2006, www.cs.utah.
edu/∼swami/tcpsec thesis.pdf.

[13] C. Kent and J. Mogul, “Fragmentation considered harmful,” in Proceed-
ings of SIGCOMM, August 1987.

[14] H. Krawczyk, “The Order of Encryption and Authentication for protect-
ing communication (or: How secure is ssl?),” in Proceedings of Advances
in Cryptology, Springer-Verlag Heidelberg, January 2001.

[15] A. Aboba and W. Dixon, “IPsec-Network Address Translation (NAT)
Compatibility Requirements,” RFC 3715, March 2004.

[16] “PeerSec Networks MatrixSSL,” http://www.matrixssl.org.
[17] J. Lemon, “Resisting SYN flood DoS attacks with a SYN cache,” in

Proceedings of BSDcon, February 2002.
[18] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing for

Message Authentication,” RFC 2104, February 1997.
[19] M. Trojnara, “S-Tunnel,” http://www.stunnel.org.
[20] B. White et al, “An Integrated Experimental Environment for Distributed

Systems and Networks,” in Proceedings of OSDI, December 2002.
[21] B. Moeller, “Security of CBC Ciphersuites in

SSL/TLS: Problems and Countermeasures,” 2004,
http://www.openssl.org/˜bodo/tls-cbc.txt.

[22] T. Dierks and E. Rescorla, “The TLS Protocol Version 1.1,” IETF
Internet Draft: draft-ietf-tls-rfc2246-bis-13.txt, June 2005.

[23] C. Kaufman, R. Perlman, and M. Speciner, Network Security: Private
Communication in a Public World, 2nd Edition. Prentice-Hall, 2002.

[24] J. Lu and Y. Zhu, “Automatic Verification of Transmission Control
Protocol Using NuSMV,” 1999, http://www.cs.toronto.edu/∼chechik/
courses99/csc2108/projects/8.pdf.

[25] F. G. A. Cimatti, E. Clarke and M. Roveri, “NuSMV: A new symbolic
model verifier,” in Proceedings of CAV, Trento, Italy, July 1999.

[26] C. Dinkel, N. Nazario, and R. Rosenthal, “A secure data network system
transport protocol,” NISTIR 90-4228, January 1998.

[27] L. Brown, “On Implementing Security Extensions to the TCP Transport
Layer,” Australian DFA, Technical Report CS8/92, 1992.

[28] T. Tsutsumi and S. Yamaguchi, “Secure TCP - Providing Security
Functions in TCP Layer,” in Proc. of INET ’95 Hypermedia, 1995.

[29] A. Heffernan, “Protection of BGP Sessions via the TCP MD5 Signature
Option,” RFC 2385, 1998.

