
Securing Ad Hoc Wireless Networks
Against Data Injection Attacks Using Firewalls

Jun Cheol Park and Sneha Kumar Kasera
School of Computing, University of Utah

Email: {jcpark, kasera}@cs.utah.edu

Abstract— We propose to secure ad hoc networks against data
injection attacks by placing firewall functionality at strategic
locations in the ad hoc network. We first show that, given the
locations of attackers and victims, the problem of placement of
firewall functionality at a fixed number of ad hoc nodes while
minimizing the impact of the data injection attack is identical to
the k-Coverage problem [1]. This problem is known to be NP-
hard. Then, we develop a near-optimal approximate algorithm for
placing firewall functions. We also incorporate the loss behavior
of wireless links in our algorithm.

Next, we develop an architecture to determine the location of
the attackers. Our architecture uses a separate control network
(a cellular network in this paper) in conjunction with ad hoc
networks to provide a provable attack detection mechanism.

We evaluate our firewall placement algorithm for various
topologies obtained from ns-2 [2] simulations. Our results show
that our algorithm can find near-optimal solutions. Based on a
simple analysis and measurement results, we also find that the
overhead of our provable attack detection mechanism is low.

I. INTRODUCTION

Ad hoc networks are expected to play a critical role in many
applications including military applications, disaster manage-
ment, and community wireless networks (e.g., a rooftop wire-
less network [3]). They are also expected to play a greater
role in social networking. One of the key impediments in
the use and deployment of ad hoc networks is the concern
for their security. Due to lack of an infrastructure and a
well defined perimeter, ad hoc networks are susceptible to a
variety of attacks. In recent years, various attacks, specifically
those targeted towards ad hoc wireless networks, have been
identified, and protection mechanisms to thwart these attacks
and ensure security resilience [4]–[8] have been proposed.

In particular, there has been a lot of research on designing
and developing secure ad hoc routing algorithms (Ariadne [9],
ARAN [10], SAODV [11], SEAD [12], SRP [13], etc) that
are focused mainly on securing the process of ad hoc routing
(route request/reply packets). However, none of the existing
work has comprehensively addressed the threat of a data
injection attack. In a data injection attack, malicious nodes
establish unrequested or unwanted ad hoc paths to some victim
nodes, send undesired traffic, and thereby waste both the
wireless bandwidth on links towards the victim nodes, and
the local resources of the victim nodes as well. The secure
ad hoc routing protocols [9]–[13] that use either secret or
public key infrastructure could mitigate the impact of such data
injection attacks to some extent by preventing any illegitimate
nodes from establishing unwanted ad hoc paths. However,

malicious nodes that are able to successfully establish secure
ad hoc paths can still launch data injection attacks. The lack of
protection against data injection attacks is the main motivation
for our work.

One approach to deal with the data injection attack is to de-
ploy local firewall functions directly at potential victim nodes.
These firewalls drop unwanted packets at the victim nodes.
However, this solution results in a wastage of bandwidth all
along the paths from the attack nodes to the victim nodes, and
also wastes local resources such as precious battery resources
in battery powered ad hoc nodes. It is most beneficial if attack
packets could be dropped as close to the attack nodes as
possible. In this paper, we propose to secure an ad hoc network
against data injection attacks by placing firewall functions at
strategic node locations. Our solution has the following two
main components which operate in concert to prevent data
injection attacks.

First, assuming that the locations of attacker nodes and
victim nodes are known, we provide an algorithm to determine
where to place the firewall functions. To minimize the over-
heads of firewall functions at ad hoc nodes, firewall functions
must be placed at minimal number of nodes while maximizing
their efficiency. We find that the problem of placing firewall
functions at a fixed number of nodes while minimizing the im-
pact of the data injection attack is identical to the k-Coverage
problem [1]. The k-Coverage problem is known to be NP-hard.
Therefore, we develop a near-optimal heuristic algorithm for
placing firewall functions. In our solution, we also incorporate
the loss behavior of wireless links, by assigning link weights
that are a function of the expected transmission time (ETT) [3].

Second, we develop an architecture to detect attacks at
victim nodes and determine the locations of attackers. In our
approach, victim nodes can themselves determine that they are
being attacked when they receive unwanted packets. However,
it is not easy for them to prove to a third party that they are
being attacked by certain attack nodes. This issue is critical in
preventing blackmailing attacks where ad hoc nodes construct
fake attacks to make legitimate nodes appear malicious. Our
architecture uses a separate control network (a cellular network
in this paper) in conjunction with an ad hoc network, to
provide a provable attack detection mechanism. In the past, the
use of ad hoc networks in conjunction with cellular networks
has been proposed to enhance performance of cellular users.
However, we believe that cellular networks could also be used
to control ad hoc networks, especially in aiding their security.

A base station1 in our separate cellular control network is
considered as a dependable entity (third party) which all the
ad hoc nodes can trust.

Our provable attack detection mechanism requires nodes
along ad hoc paths to probabilistically mark packets. A packet
marking includes a keyed hash of an ad hoc node’s address as
well as the time at which the packet is received at that node.
Each ad hoc node shares a secret key with the base station.
This key is used for computing the hash. On being attacked,
a victim node makes the entire snapshot of the attack packets,
that are probabilistically marked by nodes along the path from
the attacker(s) to the victim, to the base station. This snapshot
provides a proof of the attack on an ad hoc node. The base
station then uses this information for identifying attack nodes
and consequently for placing firewall functions.

Using a variety of topologies obtained from ns-2 [2]
simulations, we show that our firewall placement algorithm
finds near-optimal solutions. Based on a simple analysis and
measurement results, we also find that the overhead of our
provable attack detection mechanism is low.

The remainder of this paper is organized as follows. Sec-
tion II describes our problem setting. In Section III, we develop
a near-optimal heuristic algorithm for placing firewall func-
tions and evaluate its performance. We propose an architecture
which uses a separate cellular network in conjunction with ad
hoc networks in Section IV. Here, we present a provable attack
detection mechanism. In Section V, we survey one research
effort that is closest to our work on a provable detection
mechanism. We conclude our work and indicate directions for
future work in Section VI.

II. PROBLEM SETTING

Network Assumptions: We consider ad hoc networks that
use the IEEE 802.11 [14] medium access control protocol.
We assume that Dynamic Source Routing (DSR) [15] is used
as the underlying ad hoc routing algorithm and that ad hoc
nodes are all peers with no special nodes. It is also assumed
that the integrity of data packets is preserved using the existing
work [6], [16] and that their source addresses are authenticated
so that attack nodes cannot spoof addresses or modify data
packets without being detected.

Threat Model: We assume that malicious nodes can estab-
lish unrequested or unwanted ad hoc paths to some victim
nodes, send undesired traffic, and thereby waste both the
wireless bandwidth on links towards the victim nodes, and the
local resources of the victim nodes as well. We do not consider
the situation where two nodes, a source and a destination node,
collude to simply waste wireless bandwidth along the ad hoc
path between them. This attack has been studied in [17].

Detection: In our approach, all destination nodes of ad hoc
paths examine the packets they receive to detect malicious
packets based on their own pre-defined attack detection rules.
For detecting data injection attacks, the destination nodes

1Our architecture could use any other entity in the cellular network, e.g.
a radio network controller, gateway nodes, etc. This paper does not use any
specific properties of cellular base stations.

4 6
5

A1

A2
A4

: attack nodes

: victim nodes

2

1

11

3 8

10

A3

9

12

7

A5

A1

A2

A3

A4

A5

Fig. 1. Multiple attacks in ad hoc networks

use the existing threshold-based detection mechanism such
as Juniper Networks’ router filtering rules [18]. Although
our work is not restricted to these mechanisms, developing
new data injection attack detection mechanisms is beyond the
scope of this paper. In the threshold-based attack detection
mechanism [18], when the number of a certain type of
incoming packets including ICMP, UDP, SYN, or SYN/ACK
within a fixed amount of time τ , at a destination node, exceeds
a threshold value N (e.g., N/τ = 1000 packets/sec), the
destination nodes is considered to be under a data injection
attack. The attack packets could arrive from one or mode
source nodes. When a data injection attack is detected at a
victim node, the victim node can identify the source nodes of
attack flows using the entire ad hoc path inscribed in the DSR
data packets.

III. OPTIMAL PLACEMENT ALGORITHM

We address the problem of placing firewall functions at a
fixed number of nodes while minimizing the impact of data
injection attacks. This optimal placement problem translates
to the k-Coverage problem. In this section, we first describe
the k-Coverage problem in general terms and later show how
it applies to our ad hoc network setting.

The definition of k-Coverage problem is as follows [1].
• Instance: F = {S1, S2, ..., Sn} where Si is a subset of

elements in a universal set U , k < n is an integer, an
associated weight function w(u) for each element u ∈
U , and a set weight function W (T) (=

∑
u∈T w(u)) for

T ⊂ U .
• Problem: Which k subsets of F maximize the weight of

the union of selected subsets?
To understand how our optimal placement problem trans-

lates to k-Coverage problem, in Fig. 1, consider the data
injection scenario in the ad hoc network in Fig. 1. There are
four multiple attack nodes that are injecting data packets at
three victim nodes.

Let Ai denote an attack flow with flow id i, Ai(j) denote
the jth link from the attack node in the attack flow Ai, and
Si denote a set of throttled links when node i is used as a
firewall. Table I shows all the elements of Si, for all i, and
its size. In our ad hoc network context, Si depends upon the
ad hoc network topology and the location of attack flows2,
and the universal set U is a union of all Si for i = 1, ..., n.
Note that we exclude the immediate first links from attack
nodes in Si because they cannot be throttled at all as long as

2Si’s are not disjoint, they may have common elements.

TABLE I
TRANSLATION TO THE k COVERAGE PROBLEM

Si a set of throttled attack links |Si|
S1 {A2(2), ...,A2(6), A3(6)} 6

S2 {A1(2), ..., A1(5), A2(3), ..., A2(6), A3(5), A3(6)} 10

S3 {A1(3), ...,A1(5), A2(4), ..., A2(6), A3(4), ...,A3(6)} 9

S4 {A1(4), A1(5), A2(5), A2(6)} 4

S5 {A1(5), A2(6), A4(4)} 3

S6 { } (victim node) 0

S7 { } (victim node) 0

S8 {A4(3), A4(4)} 2

S9 {A3(2), ..., A3(6), A4(2), ..., A4(4), A5(2), A5(3)} 10

S10 {A3(3), ..., A3(6)} 4

S11 { } (victim node) 0

S12 {A5(3)} 1

General k-Coverage Approximate Algorithm: GenKCover
Input: F = {S1, S2, ..., Sn} where Si is a subset of elements
in a universal set U , k < n is an integer, an associated weight
function w(u) for each element u ∈ U , and a set weight
function W (T) (=

∑
u∈T w(u)) for T ⊂ U .

F ′ = F ; C = φ; I = φ
for (iter=0; iter< k; iter++) {

select Si among F ′ to maximize W (Si ∪ C)
C = C ∪ Si; I = I ∪ i
F ′ = F ′ − {Si} }

Output: C is a near-optimal solution and I is an associated
index set.

Fig. 2. GenKCover

the attack nodes continue to generate malicious packets. As a
result, Ai(1) for all attack flow id i in Fig. 1, is not in U . Now
the problem of finding the k nodes at which firewall functions
should be placed such that the weighted sum of the protected
links is maximized is equivalent to the k-Coverage problem
of finding which k subsets of F can maximize the weight of
the union of selected subsets.

A. Approximate Algorithm, GreedyUnion

The k-Coverage problem has been shown to be NP-hard
in [1]. A simple way to find an optimal solution is to use
a brute-force search of all the cases of C(n, k) for subset
selection. However, since the brute-force search algorithm runs
in an exponential order of time, it is infeasible for large n.

Therefore, we need to develop a heuristic firewall placement
algorithm that runs in polynomial time while minimizing the
impact of the attacks flows or maximizing the weighted sum
of protected links. Fig. 2 shows a general approximate algo-
rithm [1], GenKCover, for the k-Coverage problem, which
will be our base algorithm to solve the optimal firewall place-
ment problem. When an approximate algorithm guarantees to
find a solution that is at least ρ times the optimal solution,
it is called a ρ-approximation algorithm. The GenKCover
turns out to be a (1 − 1/e)-approximation algorithm [1]. It

GreedyUnion
Input: F = {S1, S2, ..., Sn} where Si is a subset of all attack
links denoted by Ai(j), w(u) for each attack link u, W (T)
(=
∑
u∈T w(u)), and a threshold σ.

for (iter=1; iter< maxk; iter++) {
C = GenKCover(iter) // iter for k in GenKCover
if W (C)/W (U) > σ, then stop; else continue; }

Output: C is a near-optimal solution and I is an associated
index set.

Fig. 3. GreedyUnion

 90

 92

 94

 96

 98

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6

P
er

fo
rm

an
ce

 R
at

io
 (%

)

Attack Ratio

Fig. 4. Performance of GreedyUnion, compared to optimal algorithm

runs in polynomial time of O(mnk) where m is the size of
Si, n is the size of F . When k << n, it asymptotically runs
in O(mn).

Now we refine the original k-Coverage problem so that at
least σ% of the links that are under attack can be protected.

• Instance: F = {S1, S2, ..., Sn} where Si is a subset of all
attack links, an associated weight function w(u) for each
attack link u denoted by Ai(j) for all i, j, a set weight
function W (T), and a threshold σ.

• Problem: Given a threshold σ, which nodes are the
optimal locations for firewall placement?

Fig. 3 describes the GreedyUnion algorithm that solves
our refined problem. The GreedyUnion is still a (1− 1/e)-
approximation algorithm because each call to GenKCover
guarantees (1−1/e)-approximation. It runs in polynomial time
in O(mnk2), where k satisfies σ. As before, when k << n,
it asymptotically runs in O(mn).

The weight function w(u) of a link u can be considered
as the achieved benefit when the link is protected using
firewalls. We can use this weight function to incorporate
different characteristics of ad hoc network link including loss,
bandwidth, and delay etc.

B. Incorporation Of Loss Rates

In this work, we use the metric ETT [3] as a weight function
of a link, that is, w(u) = ETT (u) where ETT (u) is ETT
value of the link u. Since ETT corresponds to the average
medium occupancy time while delivering a data packet on a
wireless link, it could be considered a measure of the wasted
medium occupancy time, when the link transmits a malicious
data packet. With ETT as the weight function, the goal of our
near-optimal heuristic algorithm is to place firewalls such that
the total sum of ETT values on saved links is maximized. Refer
to our technical report [19] for alternative weight functions.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 0.1 0.2 0.3 0.4 0.5 0.6

R
eq

ui
re

d
N

um
be

r o
f F

ire
w

al
ls

Attack Ratio

σ=75%
σ=85%
σ=95%

Fig. 5. Required number of firewall nodes as attack ratio increases

C. Performance of Greedy-Union

In this section, we evaluate the performance of the
GreedyUnion on topologies generated using the ns-2 [2]
simulator. We use a total of 90 ad hoc nodes, each with a
transmission range of 250 m, in a square region of 1500 m
× 1500 m. Let “attack ratio” denote the ratio of the number
of attack nodes to the total number of ad hoc nodes in the ad
hoc network. The attack ratio ranges from [0.05, 0.55] with
the interval of 0.05. In order to obtain a variety of topologies,
we generate seven random node distributions for each attack
ratio. In each distribution of an attack ratio, attack nodes
are randomly selected among 90 nodes. We then randomly
choose victim nodes and establish ad hoc paths using the DSR
routing algorithm. Each generated distribution of attack flows
translates to the k-Coverage problem, and is supplied as an
input to the GreedyUnion algorithm.

In order to compare our approximate algorithm to an
optimal solution, we also implement a brute-force algorithm
to find the optimal solution. We use ETT of each link as
the weight function w(u) in GreedyUnion. The ETT value
of each wireless link is randomly assigned from the interval
[κ, 2κ] (corresponding to the loss rates 0% to 50%, where
κ = S/B, S is packet size, and B is the achievable data
rate of a link). In Fig. 4, the x-axis represents the attack
ratio. Using min-max-average values of seven distributions
of each attack ratio, the y-axis represents the performance
ratio of the solutions found by the GreedyUnion to optimal
solutions. The results show that the approximate algorithm,
GreedyUnion, is able to find solutions that are in the worst
case more than 94% of the optimal solutions over all cases
when σ in the GreedyUnion is 75%. For larger values of σ,
the performance of the GreedyUnion is essentially identical
(not shown in this paper).

Fig. 5 shows the required number of firewalls using min-
max-average values of seven distributions for each attack ratio
for various σ values (75%, 85%, and 95%). Interestingly, as
the attack ratio increases, the required number of firewalls does
not increase after a specific attack ratio. Even for large attack
ratios (> 0.3) in Fig. 5, only about 14 firewall nodes (around
15% out of 90 nodes) on average are required to throttle 95%
of the total ETT values of attack links. This result shows that
our firewalls placement algorithm is able to prevent multiple
data injection attacks in ad hoc networks with a moderate
number of firewalls only, regardless of the attack ratios.

 base station
i

K
ib
: shared key

Ad hoc data
communications

Security control

Fig. 6. Architecture using a separate security control network

IV. ARCHITECTURE FOR PROVABLE ATTACK DETECTION

To effectively place firewall functions at strategic nodes,
there are two main issues that we must address: how to
locate attack nodes, and how to prove to a third party that
a victim node has been attacked. In order to resolve these
issues, we propose an architecture that uses a separate control
network (a cellular network) in conjunction with an ad hoc
network as shown in Fig. 6. This architecture could be viewed
as a hybrid wireless network in the sense that two separate
networks operate simultaneously. The key idea behind this
approach is to leverage a hybrid wireless network for efficient
security resilience, that might not be guaranteed in completely
distributed ad hoc networks.

In such an architecture, an ad hoc node is equipped with
two interfaces, a wireless LAN (IEEE 802.11) interface and
a wide-area cellular network interface. In the past, hybrid
wireless networks have been investigated mainly for achieving
higher performance and better scalability (e.g, UCAN [20]).
However, in our architecture, the cellular network is used to
aid security in terms of key management and in providing a
dependable control entity that all ad hoc nodes can trust.

Scalable Key Management: Each ad hoc node i has a
shared key Kib with the base station b. As a result, the total
number of shared keys in the system is in O(n) where n is
the number of ad hoc nodes. This is more scalable than an
all pairwise key management system where each node has a
distinct shared key with all the other nodes and consequently,
the total number of keys required is in O(n2).

The shared keys, Kib, can be either pre-deployed or dy-
namically re-established using an authenticated Diffie-Hellman
exchange [21] as in 3G CDMA2000 1xEV-DO [22]. Since a
mobile node in a cellular network already has a secret key
that it shares with its network service provider, this key could
be used as the pre-shared secret in the authenticated Diffie-
Hellman exchange.

Dependable Entity: In our approach, the base station is
considered as a dependable entity which ad hoc nodes can
trust. This implies that a base station cannot be compromised,
so the shared key Kib can be used for the base station to
authenticate data packets originated from ad hoc nodes. The
base station is responsible for collecting the entire snapshot
of attack flows from ad hoc nodes which declare that they
are being attacked. It is also responsible for finding a set of
near-optimal nodes of firewall functions using GreedyUnion

s i d

attack node victim nodeintermediate node i

attaching (Mi , timestamp) with marking probability p

Mi = HMAC (Kib, Data | timestamp | node i)

path length h Data Data, (Mi , timestamp)

base
station

inform of attack with
marked data packets

Fig. 7. Random marking algorithm with probability p for path length h

(Section III-A), and then securely setting up firewall function-
ality using the shared keys with the selected nodes.

A. Provable Attack Detection

A fundamental question in our architecture is how a victim
ad hoc node can prove to the base station that it is being
attacked by certain attacker nodes. The base station must make
sure that malicious packets have really been delivered to a
victim node from a certain source node.

We develop a provable attack detection mechanism using a
random marking scheme as depicted in Fig. 7. The key idea
of our scheme is to attach a timestamp to a data packet. A
message authentication code (MAC) of the data packet, the
timestamp, and the node id is computed and also attached to
the packet. Nodes do not attach MACs to all packets. Instead,
they do so with a probability p. This probabilistic marking
scheme allows us to tradeoff the overhead of marking scheme
and the number of packets marked. Incorporating timestamps
is crucial not only in preventing replay attacks, but also in
proving in what period of time those attack packets are sent
to the victim nodes. More formally, let marki(t) denote a 3-
tuple of (t, i,Mi(t)) where t is a timestamp, i is an ad hoc
node id, and Mi(t) is the MAC associated with the mark,
marki(t). Mi(t) is computed as follows:

Mi(t) = MAC(Kib, Data|timestamp t|node id i)
where | is the concatenation operator. More specifically, we
use an HMAC (keyed-hash MAC) [23] function to protect the
integrity of the mark3.

When the node decides to mark a packet (with probability
p), it appends, unlike existing probabilistic packet marking
schemes [24]–[27], its own mark to the data packet which
might already have marks from previous nodes. The marking
node does not overwrite an existing mark. This helps in
reducing the overall number of marked packets required to
prove attacks. In the case of ad hoc networks, we do not
have to restrict ourselves to fitting the marks in the IP header.
As opposed to the universally deployed Internet, additional
functionality can be relatively easily added in ad hoc networks.

3The size of a mark would be 24, 28, or 40 bytes in total: 4 bytes for
timestamp, 4 bytes for node id [3], and 16, 20, or 32 bytes for HMAC-MD5,
HMAC-SHA1, or HMAC-SHA256 [23].

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20

α
(p

, h
)

Path Length h

p = 0.01
p = 0.02
p = 0.03
p = 0.04
p = 0.05

Fig. 8. Expected fraction of data packets being marked

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 2 4 6 8 10 12 14 16 18 20

M
ar

ki
ng

 P
ro

ba
bi

lit
y

p

Path Length h

Fig. 9. Marking probability p v.s. path length h when α=0.05

Already, in the DSR protocol, a data packet includes the
entire ad hoc path. We also show later in this section that
the overhead of appending marks is very low.

A victim node stores only those data packets that are
marked. However, it counts all the unwanted packets, including
those that do not have any marks, towards its threshold-based
attack detection. When it detects an attack flow, the victim
node forwards the stored marked data packets to the base
station as a provable evidence together with a request to block
the attacker node. On receiving this request, and the attack
evidence, the base station verifies whether the timestamps are
within a legitimate time-bound, and also checks the integrity
of each mark by using the secret keys, Kib, that it shares with
each ad hoc node in the attack path.

B. Selection Of Marking Probability

We describe a simple methodology for an ad hoc node to
select the probability p with which it randomly mark packets
before forwarding them. An important goal of our random
marking scheme is to minimize the marking overhead while
being robust enough to prove an attack detection.

Let the random marking probability be p for every node on
an ad hoc path and the path length be h. Let α(p, h) be the
expected fraction of data packets being marked. α(p, h) can
be expressed as follows.

α(p, h) = 1− (1− p)h−1 (1)

This is because α(p, h) is 1 - the probability that a data packet
does not have a single mark from any of the intermediate nodes
excluding the attack node and the victim node. Fig. 8 shows
the value of α as h increases for various marking probabilities
from 0.01 to 0.05.

In other words, p represents the minimal random marking
probability at each node when a victim node requires α
fraction of data packets marked to be able to detect an attack,
and prove the attack to the base station.

p = 1− e
ln(1−α)
(h−1) (2)

Therefore, once we fix α to a desired value, the marking
probability p of each node can be determined by Eq. (2). The

minimal values of p for each h to ensure that at least α = 0.05
fraction of data packets are marked are shown in Fig. 9.

The next important question is how to find a desirable value
of α. In order to be convinced that a certain node belongs to
the attack path, the base station requires a certain minimum
number of marked packets per second from that node. Let M
be the average number of marked packets per second per node
required by the base station. When N is the number of attack
packets required to detect an attack in a given time τ , the
expected total number of marked packets, α, is determined by
the following equation.

α =
(h− 1)M

N/τ

Since N is likely to be large, the value of α is likely to be
small. For instance, for h = 6, N/τ = 1000, and M = 10,
the value of α must be greater than or equal to 0.05. Once we
decide the value of α, we can determine a suitable marking
probability p based on α and h. In this example, p ' 0.01.
Note that, since the DSR is used as the underlying ad hoc
routing algorithm, every node is able to figure out the path
length h of each flow, and then determine a suitable marking
probability p based on the desirable value of α.

C. Overhead of Provable Attack Detection

Based on a simple analysis and measurement results, we
find that the overhead of our provable attack detection mech-
anism is low (Refer to our technical report [19]).

V. RELATED WORK

In this section, we mainly focus on one research effort:
Authenticated Marking Scheme (AMS) [28] that is closest to
our work on a provable attack detection mechanism. AMS
uses authenticated packet markings for path reconstruction.
However, it differs from our provable attack detection mech-
anism in the following significant ways. First, due to space
limitations in the IP header, a router in the AMS attaches
authenticated marks without including its own identity. The
victim node must try all the keys associated with all the routers
to identify the router that marked the packet. Our scheme
includes the identity of marking node thereby simplifying the
identity detection. This comes at the cost of increasing the
packet size slightly but saves large amount of computation at
the victim. Second, AMS uses implicit timestamps (marks are
generated based on keys that are associated with specific time
intervals). The time intervals are thus dependent on the key
generation. We use explicit timestamps that are independent
of the key infrastructure. Third, AMS requires a complete
knowledge of the entire network topology at the victim node.
We do not require this information in our scheme.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed to secure ad hoc networks against
data injection attacks using firewalls. We first developed a
near-optimal heuristic algorithm to place firewall functions at
strategic locations in the ad hoc network. Next, we developed

an architecture to determine the location of the attackers and
provided a provable attack detection mechanism with minimal
overhead.

We would like to study the impact of node mobility in
placing firewall functions at optimal strategic positions. In this
paper, we used a threshold-based detection mechanism [18],
but more sophisticated detection algorithms can be further
investigated for various types of attacks in ad hoc networks.

REFERENCES

[1] D. S. H. et al., “Analysis of the greedy approach in problems of
maximum k-coverage,” in Naval Research Logistics, vol. 45, 1998.

[2] “ns-2 simulator,” http://www.isi.edu/nsnam/ns.
[3] J. B. et al., “Architecture and evaluation of an unplanned 802.11b mesh

network,” in Proceedings of ACM MOBICOM, 2005.
[4] Y.-C. H. et al., “Packet leashes: A defense against wormhole attacks in

wireless networks,” in IEEE INFOCOM, 2003.
[5] ——, “Rushing attacks and defense in wireless ad hoc network routing

protocols,” in Proceedings of ACM WiSe, Sept. 2003.
[6] J. K. et al., “A secure adhoc routing approach using localized selfhealing

communities,” in Proceedings of ACM MOBIHOC, May 2005.
[7] I. A. et al., “Denial of service resilience in ad hoc networks,” in

Proceedings of ACM MOBICOM, Sept. 2004.
[8] H. Y. et al., “Self-organized network-layer security in mobile ad hoc

networks,” in Proceedings of ACM WiSe, Sept. 2002.
[9] Y.-C. H. et al., “Ariadne: A secure on-demand routing protocol for ad

hoc networks,” in Proceedings of ACM MOBICOM, 2002.
[10] K. S. et al., “A secure routing protocol for ad hoc networks,” in Journal

on Selected Areas in Communication, special issue on Wireless Ad hoc
Networks, vol. 23, no. 3, Mar. 2005.

[11] M. G. Zapata, “Secure ad hoc on-demand distance vector (saodv)
routing,” Aug. 2001, draft-guerrero-manet-saodv-00.txt.

[12] Y.-C. H. et al., “Sead: Secure efficient distance vector routing for mobile
wireless ad hoc networks,” in Journal of Ad Hoc Networks, vol. I, 2003,
pp. 175–192.

[13] P. P. et al., “Secure routing for mobile ad hoc networks,” in Mobile
Computing and Communications Review, vol. 7, no. 1, Jan. 2003.

[14] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications, ANSI/IEEE Std., 1999.

[15] D. B. J. et al., “Dynamic source routing in ad hoc wireless networks,” in
Computer Communications Review - Proceedings of SIGCOMM, 1996.

[16] S. M. et al., “Mitigating routing misbehavior in mobile ad hoc networks,”
in Proceedings of ACM MOBICOM, 2000, pp. 255–265.

[17] W. Y. et al., “Secure cooperative mobile ad hoc networks against
injecting traffic attacks,” in Proceedings of IEEE SECON, 2005.

[18] “Denial of service and attack protection,” 2005,
http://www.juniper.net/products/integrated/dos.pdf, Juniper Networks
Co.

[19] J. C. P. et al., “Securing ad hoc wireless networks against data injection
attacks using firewalls,” University of Utah, Tech. Rep., Oct. 2006,
http://www.cs.utah.edu/˜jcpark/publications/UUCS-06-011.pdf.

[20] H. L. et al., “Ucan: A unified cellular and ad-hoc network architecture,”
in Proceedings of ACM MOBICOM, Sept. 2003, pp. 353–367.

[21] C. K. et al., Network Security: Private Communication in a Public
World, 2nd Edition. Prentice-Hall, 2002.

[22] Qualcomm, “1xev-do security,” 2003, white paper. [On-
line]. Available: http://www.wheresmyload.com/cdma/1xEV/media/
web papers/wp security.pdf

[23] H. K. et al., “Hmac: Keyed-hashing for message authentication,” RFC
2104, Feb 1997.

[24] S. S. et al, “Practical network support for ip traceback,” in Proceedings
of ACM SIGCOMM, Aug. 2000.

[25] D. D. et al., “An algebraic approach to IP traceback,” Information and
System Security, vol. 5, no. 2, pp. 119–137, 2002.

[26] Q. D. et al., “Efficient probabilistic packet marking,” in IEEE ICNP,
Nov. 2005.

[27] J. L. et al., “Large-scale ip traceback in high-speed internet: Practical
techniques and theoretical foundation,” in Proceedings of the IEEE
Symposium on Security and Privacy, 2004.

[28] D. X. S. et al., “Advanced and authenticated marking schemes for IP
traceback,” in Proceedings IEEE INFOCOM, 2001.

